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Abstract. Metis is an ordered paramodulation prover built into the
Isabelle/HOL proof assistant. It attempts to close the current goal using
a given list of lemmas. Typically these lemmas are found by Sledgeham-
mer, a tool that integrates external automatic provers. We present a new
tool that analyzes successful Metis proofs to derive variable instantia-
tions. These increase Sledgehammer’s success rate, improve the speed of
Sledgehammer-generated proofs, and help users understand why a goal
follows from the lemmas.
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1 Introduction

Sledgehammer [31] is undoubtedly one of the interactive proof assistant Isa-
belle/HOL’s [27] most popular components. This component gives Isabelle access
to many external automatic theorem provers (ATPs), which can mechanize rou-
tine proofs [12, 16]. When the user invokes Sledgehammer on a proposition to be
proved, it performs the following steps:

1. It invokes a number of external ATPs with the goal and the background
library of facts (definitions, lemmas, theorems, etc.); this involves translating
the goal and facts from higher-order logic to the ATPs’ logics.

2. For any proof that is found, the used facts are extracted from it and the
internal prover Metis [20], based on ordered paramodulation, is invoked to
reconstruct an Isabelle proof based on this list of facts only.

This paper is about obtaining and exploiting the instantiations of the facts
used in the proofs. Our motivation is that using instantiated facts

• can speed up proof reconstruction (and even turn timeouts into successes);
• can improve readability of proofs for humans; and
• can lead to simpler proofs.
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Example 1. We start with a simple example where we believe human readability
is improved. We work in a linear order with ⊥ and ⊤. Sledgehammer proves that
in the context of the facts

⊤ ≮ x (1) x ̸= ⊥ ↔ ⊥ < x (2)

the assumption ⊥ ≮ ⊤ implies a = b, where a and b are arbitrary constants.
Why is that? It turns out that the following instantiations are used:

⊤ ≮ a (1a) ⊤ ≮ b (1b)
a ̸= ⊥ ↔ ⊥ < a (2a) b ̸= ⊥ ↔ ⊥ < b (2b) ⊤ ≠ ⊥ ↔ ⊥ < ⊤ (2⊤)

Clearly ⊥ ≮ ⊤ implies ⊥ = ⊤ via (2⊤). This implies ⊥ ≮ a and ⊥ ≮ b via (1a)
and (1b). Now we obtain a = ⊥ and b = ⊥ via (2a) and (2b), and thus a = b.
Although this deduction still needs some thought, we believe that it is far simpler
than if we had to work out the derivation from (1) and (2) alone.

This paper is structured as follows. Section 2 presents the necessary back-
ground about Isabelle, Sledgehammer, and Metis. Section 3 presents further
introductory examples. The core of the paper is in Section 4, which explains how
to obtain the instantiations used during a Metis proof and translate them into
instantiations of the corresponding Isabelle facts. Section 5 explains how Sledge-
hammer was extended to cooperate with the extended Metis prover. Section 6
presents our empirical evaluation of how instantiations improve the performance
of Sledgehammer. We end with related work and the conclusion.

Our extensions are available as part of Isabelle starting with version 2025.4
They are documented in the Sledgehammer user’s manual [5]. The raw data for
our evaluation is available online.5

2 Background

Isabelle. Isabelle/HOL [27,41] is a proof assistant for polymorphic higher-order
logic enriched with type classes [34]. It is written primarily in Standard ML. It
has an inference kernel through which all logical inferences must go to be deemed
acceptable. At the user level, notations largely follow mathematical practice.

Sledgehammer. The Sledgehammer tool [31] consists of six main components:

1. The relevance filter (or “premise selector”) heuristically selects a subset of
the available facts as likely relevant to the current goal. Typically, hundreds
of facts can be chosen without overwhelming ATPs. Sledgehammer includes
two relevance filters [8, 23], which can be combined.

4 https://isabelle.in.tum.de/website-Isabelle2025/
5 https://nekoka-project.github.io/pubs/instantiations_data.zip

https://isabelle.in.tum.de/website-Isabelle2025/
https://nekoka-project.github.io/pubs/instantiations_data.zip
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2. The translation module constructs an ATP problem from the selected facts
and the current goal, translating Isabelle’s polymorphic higher-order logic to
the ATP’s logic [7, 22].

3. The ATP tries to prove the problem. Actually, multiple ATPs can be run
in parallel. Commonly used ATPs include cvc5 [3], E [39], Leo-III [35],
SPASS [10], Vampire [4], veriT [13], Z3 [25], and Zipperposition [38].

4. If one or more ATPs find a proof, the proof minimization module repeatedly
invokes each ATP with subsets of the facts referenced in the respective proof,
trying to reduce the number of dependencies and speed up the next steps.

5. The proof reconstruction module transforms each ATP proof into a textual
Isabelle proof. Reconstruction means that Sledgehammer and the ATP need
not be trusted. Typically, the structure of the ATP proof is discarded, and
the Isabelle proof consists of a single proof method (often metis) invoked
with the facts referenced in the ATP proof. Detailed Isabelle proofs, or Isar
proofs [40], are available as an experimental feature [6].

6. For each ATP proof, the preplay module tries out various proof methods
before they are presented to the user. If several methods succeed, the fastest
one is chosen [6].

As an example, suppose Sledgehammer selects 512 facts f1, . . . , f512 and
passes them, along with the goal, to E. Then E finds a proof involving three
facts, f10, f73, and f359, and minimization reduces this list to two: f10 and f359.
By trial and error (and preplaying), Sledgehammer determines that the proof
method metis with f10 and f359 as arguments solves the Isabelle goal in 23 ms,
and no other proof method succeeds, so this metis call is suggested to the user.

The Metis ATP. Metis [20] is an ATP for untyped first-order logic with equality
written in Standard ML. It is based on ordered paramodulation, a variant of
superposition [2]. Although Metis was developed as a standalone program, it is
also incorporated in Isabelle’s source code, so that it is always available.

Thanks to its calculus, Metis is reasonably performant, although it cannot
compete with state-of-the-art superposition provers such as Vampire [36]. Metis’s
main strengths are the readability of its source code and the simplicity and
fine granularity of its proof format. Proofs are expressed using the following six
inference rules:

Axiom
C

Assume
A ∨ ¬A

C Subst
Cσ

Refl
t = t

Equality
s ̸= t ∨ ¬L[s]p ∨ L[t]p

C ∨A ¬A ∨D Resolve
C ∨D

Notice that substitution is captured by the explicit Subst rule instead of
being part of Resolve. Moreover, all equality reasoning is reduced to Refl
and Equality. For proof search, Metis relies on a more efficient calculus that
performs ordered paramodulation, but the proofs are then translated to the above
fine-granular rules.
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The metis Proof Method. Isabelle’s metis (with a lowercase m) proof method
[32] builds on the Metis (with an uppercase M) ATP to provide general-purpose
proof automation. The metis proof method takes a list of facts as argument and
translates them, together with the current goal, from polymorphic higher-order
logic to untyped first-order logic. The resulting axiom clauses are then introduced
in the proof attempt using the Axiom rule. The translation uses the same
techniques (and the same code) as Sledgehammer. Next, metis invokes the Metis
ATP, and if Metis finds a proof, it is reconstructed step by step using Isabelle’s
inference kernel, so that the goal becomes an Isabelle theorem. A metis call is
considered successful if the Metis ATP found a proof and Isabelle reconstructed it.

Since it may be hard for the user to determine which facts are necessary for a
proof, in practice metis is almost always used in conjunction with Sledgehammer.

3 Examples

Before we study our metis and Sledgehammer extensions in detail, we take a look
at a few examples that illustrate how instantiating facts can not only improve
readability but also speed up proof reconstruction and lead to simpler proofs.
The final example demonstrates how more complex terms are displayed.

Example 2. We present a goal from the Archive of Formal Proofs [9], where
instantiating facts substantially speeds up the proof and turns a timeout into a
success. This example stems from a formalization of Tarski’s axioms for Euclidean
geometry [15]. The lemma cong_mid2__cong states the following property, where
Cong denotes the congruence relation and Midpoint states that a point lies exactly
in the middle of two other points:

Midpoint M A B −→ Midpoint M′ A′ B′ −→ Cong A M A′ M′ −→ Cong A B A′ B′

When invoking Sledgehammer on a modern laptop for this goal, the external
ATP cvc5 [3] finds a proof using the facts cong_inner_transitivity, l2_l1_b,
midpoint_bet, and midpoint_cong. However, metis times out; i.e., it fails to find
a proof derived from these facts within 1 s. After inferring the instantiations
and instantiating the facts, though, metis successfully solves the goal in 50 ms.
The instantiations are simple: Each free variable in the facts is replaced by one
of M, A, B, M′, A′, B′. The facts midpoint_bet and midpoint_cong each have two
different instantiations and thus appear twice in the resulting Isabelle proof,
which may also improve readability.

Example 3. Instantiating facts not only speeds up metis but also leads to
simpler and more readable proofs. Suppose that we want to prove the goal
0 < i −→ x ≤ xi for natural numbers i, x. When invoking Sledgehammer on a
modern laptop, the external ATP veriT [13] finds a proof including the following
facts, where Suc returns the successor of its argument:
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1 = Suc 0 (nat_1)
a ≤ 0 −→ a = 0 (bot_nat_0.extremum_uniqueI)

m ≰ n←→ Suc n ≤ m (not_less_eq_eq)
1 ≤ a −→ 0 < n −→ a ≤ an (self_le_power)

0 ≤ a −→ 0 ≤ an (zero_le_power)

The metis method can solve the goal with these facts in 82 ms. However, after
inferring the instantiations and instantiating the facts, metis needs only 41 ms to
solve the goal, and the auto [29] proof method is even faster, needing only 7 ms.
Additionally, auto requires only the following two instantiated facts:

x ≰ 0←→ Suc 0 ≤ x (not_less_eq_eq with {m 7→ x, n 7→ 0})
1 ≤ x −→ 0 < i −→ x ≤ xi (self_le_power with {a 7→ x, n 7→ i})

By contrast, auto fails to find a proof derived from these facts without instan-
tiations. The Isabelle proof using auto is simpler and more readable than the
metis proof, since trivial facts were eliminated. This helps the user focus on the
relevant facts when trying to understand the proof.

Example 4. In the preceding examples, the instantiations were simple, with
each free variable being replaced by a single symbol. There are also proofs where
instantiations are more complex, possibly involving λ-abstractions and quantified
variables. Consider the goal

surj (λn. g (Suc n)) −→ (∃m. P (Suc (g m))) −→ (∃n. P (g (Suc n)))

where surj states that a function is surjective. We have the fact surj f −→
(∃x. f x = y) at our disposal. Our metis extension suggests instantiating f with
λc. g (Suc c) and y with Suc (g _) in the fact. Notice that bound variables
can be renamed in the inferred instantiations (here, n became c). Additionally,
‘_’—which corresponds to a fresh free variable—can appear as a placeholder for
quantified variables (e.g., m), since there is no way to refer to them.

4 Instantiations from Metis Proofs

We extend the metis proof method so that it infers the instantiations of facts
used in a proof and suggests them to the user. This extension is executed after a
successful metis proof, provided that the metis_instantiate option is enabled.

Inference of Instantiations for Metis Proofs. To infer the instantiations of
the Isabelle facts, we first infer the instantiations of the Metis clauses. These are
the substitutions that were applied to the axiom clauses in the Metis proof.

Definition 1. A Metis theorem θ is recursively defined as a triple (C, r, θ̄) con-
sisting of a Metis clause C, an inference rule r, and a list of Metis theorems θ̄,
where C is derived directly from θ̄ using the rule r. A Metis proof is a Metis
theorem for the empty clause, denoted by False.
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Definition 2. A Metis substitution σ = {x1 7→ t1, . . . , xn 7→ tn} is a partial
function from Metis variable names to Metis terms. The composition of two
substitutions σ1 ◦ σ2 first applies σ2 and then σ1, so that C(σ1 ◦ σ2) = (Cσ2)σ1.

Definition 3. The function infer(θ, σ) returns a list of pairs (C, σ′), where C is
an axiom clause in the Metis theorem θ and σ′ is the applied substitution. The
argument σ is used as an accumulator and is initialized to ∅ for a Metis proof.
The function is defined recursively as follows:

infer((C, r, []), σ) =
{

[(C, σ)] if r = Axiom
[] otherwise

infer((C, Subst, [θ]), σ) = infer(θ, σ ◦ σ′)
infer((C, Resolve, [θ1, θ2]), σ) = infer(θ1, σ) @ infer(θ2, σ)

where σ′ in the second equation is the substitution carried by the Subst inference
rule on the left, and @ in the third equation denotes list concatenation.

Example 5. Suppose that we want to prove the goal 1 < Suc (Suc x) on natural
numbers from the following facts:

m < n −→ Suc m < Suc n Suc 0 = 1 0 < Suc n

We translate the goal and the facts into first-order logic by using the predicate
symbol less for <. Metis finds the following proof:

(1) Axiom: ¬less(1, Suc(Suc(x)))

(2) Axiom: ¬less(m, n) ∨ less(Suc(m), Suc(n))

(3) Subst from (2) using σ = {m 7→ 0, n 7→ y}:
¬less(0, y) ∨ less(Suc(0), Suc(y))

(4) Axiom: Suc(0) = 1

(5) Equality: Suc(0) ̸= 1 ∨ ¬less(Suc(0), Suc(y)) ∨ less(1, Suc(y))

(6) Resolve from (4) and (5): ¬less(Suc(0), Suc(y)) ∨ less(1, Suc(y))

(7) Resolve from (3) and (6): ¬less(0, y) ∨ less(1, Suc(y))

(8) Subst from (7) using σ = {y 7→ Suc(x)}:
¬less(0, Suc(x)) ∨ less(1, Suc(Suc(x)))

(9) Resolve from (1) and (8): ¬less(0, Suc(x))

(10) Axiom: less(0, Suc(n))

(11) Subst from (10) using σ = {n 7→ x}: less(0, Suc(x))

(12) Resolve from (9) and (11): False
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We can now infer the substitutions that were applied to the axiom clauses:

infer(12,∅) = infer(1,∅) @ infer(2, {y 7→ Suc(x)} ◦ {m 7→ 0, n 7→ y})
@ infer(4, {y 7→ Suc(x)}) @ infer(5, {y 7→ Suc(x)})
@ infer(10, {n 7→ x})

= infer(1,∅) @ infer(2, {y 7→ Suc(x), m 7→ 0, n 7→ Suc(x)}),
@ infer(4, {y 7→ Suc(x)}) @ [] @ infer(10, {n 7→ x})

= [(¬less(1, Suc(Suc(x))),∅),
(¬less(m, n) ∨ less(Suc(m), Suc(n)),
{y 7→ Suc(x), m 7→ 0, n 7→ Suc(x)}),

(Suc(0) = 1, {y 7→ Suc(x)}), (less(0, Suc(n)), {n 7→ x})]

Given a Metis proof θ, the call infer(θ,∅) yields a list of pairs (C, σ), where
C is an axiom clause and σ is the applied substitution. If the proof is retried,
the instantiated axiom clauses—i.e., the list of all clauses Cσ corresponding to
the pairs (C, σ)—can be used instead of the original axiom clauses to restrict
the search space and speed up Metis. After instantiation, a Metis proof is still
possible:

Theorem 1. A Metis proof θ can be transformed into a new Metis proof derived
from the instantiated axiom clauses (defined above). The new Metis proof does
not involve the Subst inference rule and uses at most as many proof steps as θ.

The proof is by induction on the structure of the Metis proof θ. It proceeds
by instantiating the clauses in θ with infer’s current accumulator value and
removing Subst inference steps. Because clauses are sets and not multisets of
literals, instantiation can shorten clauses by unifying literals. This can result in
the elimination of resolution steps and thereby entire subproofs.

Proof. We annotate each Metis theorem in θ with infer’s current accumulator
value using the call annotate(θ,∅), defined as follows:

annotate((C, r, []), σ) = (C, r, [], σ)
annotate((C, Subst, [θ′]), σ) = (C, Subst, [annotate(θ′, σ ◦ σ′)], σ)

annotate((C, Resolve, [θ1, θ2]), σ) = (C, Resolve,
[annotate(θ1, σ), annotate(θ2, σ)], σ)

where σ′ is again the substitution carried by the Subst inference rule.
It suffices to show that each annotated Metis theorem (C, r, θ̄, σ) contained

in annotate(θ,∅) can be transformed into a new Metis theorem (C ′, r′, θ̄′), such
that C ′ ⊆ Cσ holds (with C ′ = Cσ for axiom clauses), Subst inference steps
are removed, and no new proof step is introduced. Since C ′ ⊆ False∅ implies
C ′ = False, the whole Metis proof θ is transformed into a new Metis proof. By
the definitions of the infer and annotate functions, C ′ = Cσ for axiom clauses
implies that the new Metis proof is derived from the instantiated axiom clauses.

Assume that we have an annotated Metis theorem (C, r, θ̄, σ) contained in
annotate(θ,∅). We prove the proposition by induction on the inference rule r. In
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the base case, r has no premises, so θ̄ = [] and r is one of Axiom, Assume, Refl,
and Equality. We construct the new Metis theorem (C ′, r′, θ̄′) = (Cσ, r, []) so
that C ′ = Cσ ⊆ Cσ holds.

If r = Subst, we have θ̄ = [θ1], where θ1 = (C1, r1, θ̄1), and C = C1σ′, where
σ′ is the substitution carried by the Subst inference rule. Inductively, we can
transform annotate(θ1, σ ◦ σ′) into a new Metis theorem θ′ = (C ′, r′, θ̄′) with
C ′ ⊆ C1(σ ◦ σ′). Using C1(σ ◦ σ′) = (C1σ′)σ = Cσ, we can deduce C ′ ⊆ Cσ, so
we use θ′ as the new Metis theorem and remove the substitution step.

If r = Resolve, then θ̄ = [θ1, θ2], where θ1 = (C1, r1, θ̄1), θ2 = (C2, r2, θ̄2),
C1 = D ∨ A, C2 = ¬A ∨ E, and C = D ∨ E. Inductively, we can transform
annotate(θ1, σ) into a new Metis theorem θ′

1 = (C ′
1, r′

1, θ̄′
1) with C ′

1 ⊆ C1σ and
annotate(θ2, σ) into θ′

2 = (C ′
2, r′

2, θ̄′
2) with C ′

2 ⊆ C2σ. Since instantiation can
shorten clauses, we distinguish between two cases: In the first case, Aσ is contained
in the clauses C ′

1 and C ′
2, so we obtain D′ and E′, where C ′

1 = D′ ∨ Aσ and
C ′

2 = ¬Aσ ∨ E′. Then we can construct the new Metis theorem (C ′, r′, θ̄′) =
(D′ ∨ E′, Resolve, [θ′

1, θ′
2]) and C ′ ⊆ Cσ holds since D′ ∨ E′ ⊆ Dσ ∨ Eσ = Cσ.

In the second case, we find θ′ = (C ′, r′, θ̄′) ∈ {θ′
1, θ′

2}, such that C ′ does not
contain Aσ. Then C ′ ⊆ Cσ holds, and we can use θ′ as the new Metis theorem,
thereby removing the resolution step as well as the other subproof.

Translation of Metis Terms to Isabelle Terms. Once the instantiations
of the Metis clauses have been inferred, a translation procedure converts the
contained Metis terms into Isabelle terms that can be presented to the user.

The list obtained from the infer function is filtered to include only those pairs
(C, σ) where the Metis clause C is derived from an Isabelle fact φ, and not from
the negated goal. The procedure then continues to translate only Metis terms t
of substitution elements (x 7→ t) ∈ σ where the Metis variable x occurs in C
and corresponds to a free variable in φ. There may be other Metis variables,
including those corresponding to type variables or quantified variables. The direct
instantiation of type variables is seldom useful, since types can be inferred from
the instantiated terms. Metis variables that correspond to quantified Isabelle
variables may emerge during clausification; however, since these are bound in
Isabelle, there is no way to refer to them.

The translation procedure must decode constructs that are introduced by the
translation from polymorphic higher-order logic to untyped first-order logic in
metis. This decoding uses the same code as the proof reconstruction in metis [32],
where Metis terms emerge during reconstruction of the Subst inference rule.
The introduced constructs include the encoding of Isabelle symbols using Metis
constants, the encoding of free variables using Metis variables, and the encoding
of partial application using a distinguished binary symbol app [22]. For example,
map f and map f xs might be translated to app(map, f) and app(app(map, f), xs),
where map and f are Metis constants and xs is a Metis variable. While decoding
these constructs is straightforward, decoding the type information (for which there
are several encodings [7]) was considered too complicated for proof reconstruction
in metis, so type inference is used instead [32].
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The resulting Isabelle terms may still contain Skolem terms and encodings of
λ-abstractions. Such metis-internal constructs may not appear in terms suggested
to the user. Thus our translation procedure must eliminate them.

Skolem terms are eliminated by replacing them with a wildcard, which is
displayed as ‘_’ and corresponds to a fresh free variable (as demonstrated in
Example 4). Consequently, the instantiated facts may still contain free variables,
for which Metis must substitute the corresponding Skolem terms. It does not
suffice to simply replace the Skolem symbols with ‘_’; their arguments must also
be removed. This is necessary because the arity of Skolem symbols can change
due to the instantiation of facts. For example, the Skolem symbol introduced for
∃y. x < y depends on x and therefore requires an argument, whereas the Skolem
symbol for the instance ∃y. 0 < y does not require any argument.

The metis proof method encodes λ-abstractions using either SKBCI combi-
nators [37] or λ-lifted supercombinators [19]. To eliminate these combinators,
the translation procedure replaces them with their definition, followed by a
βη-reduction of the resulting terms. For example, the term λx. 0 is encoded
as K 0, where K a b = a. When the translation procedure detects the term
K 0 1, it replaces K with λa. λb. a and produces the term 0 after β-reduction. If
λ-abstractions remain after βη-reduction, the bound variables may have different
names than in the original λ-abstractions (as demonstrated in Examples 4 and 7),
but this is not a problem since Isabelle equates terms up to α-equivalence.

In the final step of the translation procedure, all remaining free variables (i.e.,
all free variables occurring in the Isabelle terms and all uninstantiated variables in
the clauses) are instantiated with the Isabelle polymorphic constant undefined,
which provides a witness for every type’s inhabitedness. These variables emerge
when the proof was possible without concrete terms. For example, a = b can be
derived from x + a = x + b without choosing a value for x. Instantiation of such
variables is sensible, since it restricts the search space, but users can prevent this
behavior by disabling the metis_instantiate_undefined option, in which case the
variables are replaced by ‘_’.

Instantiation of Isabelle Facts. The translation procedure yields a list of
Isabelle facts and instantiations of their free variables. A single fact may pos-
sess multiple instantiations if it is used multiple times in the proof. To reduce
the number of instantiations and to avoid duplicates, we merge instantiations
whenever possible:

Definition 4. A (variable) instantiation {x1 7→ t1, . . . , xn 7→ tn} for an Isabelle
fact φ is a partial function from variable names to Isabelle terms in which all
variable names x1, . . . , xn occur in φ as free variables. Two instantiations ι1, ι2 for
the same fact φ can be merged into ι1∪ι2 if ι1(x) equals ι2(x) up to α-equivalence
for all shared variable names x ∈ dom(ι1) ∩ dom(ι2).

Merging can be used to avoid duplicates, since every instantiation can be
merged with itself. Conversely, if two instantiations stem from the same clause
C and can be merged, they are equal up to α-equivalence. This is because the
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translation procedure considers only variables occurring in C, and all uninstan-
tiated variables of C are instantiated with undefined or ‘_’. As a result, the
domains of the instantiations are exactly the variable names occurring in C that
correspond to a free variable in the fact.

By the above argument, if different instantiations can be merged, they must
stem from different clauses. In practice, metis will still succeed with the merged in-
stantiation, since the clausifier will split the instantiated fact into the instantiated
clauses again. Consequently, merging does not lose information.

Example 6. Consider the following Isabelle fact φ:

even n −→ 0 ≤ xn ∧ (−y)n = yn

The clausifier splits it into two clauses. Suppose that both clauses are used in
a metis proof and we inferred the instantiations ι1 = {x 7→ a, n 7→ 2} and
ι2 = {y 7→ b, n 7→ 2}. Since the variable name n is mapped to the same term in
both instantiations, these can be merged to ι1 ∪ ι2 = {x 7→ a, y 7→ b, n 7→ 2}. By
instantiating φ with ι1 ∪ ι2, we obtain the following new fact:

even 2 −→ 0 ≤ a2 ∧ (−b)2 = b2

If metis is invoked again using this fact instead of the original fact, the clausifier
will again split it into the two clauses, instantiated with ι1 and ι2, respectively.

Since we use type inference instead of reconstructing type information, the
translation procedure may produce Isabelle terms with overly generic types.
Given that types can be displayed in Isabelle (e.g., using the show_types option)
and overly generic types can prevent the folding of abbreviations, we attempt to
concretize the types of the terms of a variable instantiation ι for a fact φ. We
achieve this through type unification [28]: The types of the terms of ι are unified
with the types of the corresponding variables in φ, and the unifier is then applied
to all the types contained in the terms of ι. It is crucial to find a single unifier for
the entire instantiation ι, since the same type variable may appear in multiple
types of the free variables in φ, and they must be synchronized.

Finally, if instantiations have been found, metis suggests that the user replaces
the current metis call with a new call using the instantiated facts. Each instan-
tiated fact is displayed by its name together with an annotation that specifies
to instantiate it with the terms of the corresponding instantiation. If there are
multiple instantiations of a single fact, the fact is displayed multiple times. By
replacing the call, the user may get a more readable and faster proof.

5 Sledgehammer Extension

Since metis calls are usually generated by Sledgehammer, we also extend Sledge-
hammer’s proof reconstruction module to enable direct generation of proofs with
instantiated facts. By using Sledgehammer’s preplay module, this extension can
not only generate faster and more readable proofs but also transform timeouts into
successes as well as produce simpler proofs using other proof methods than metis.
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Preplay with Instantiations. Sledgehammer’s proof reconstruction is started
after an external ATP has found and minimized a proof. The facts referenced in
the ATP proof are then used to generate an Isabelle proof. The metis extension
we presented in Section 4 can now be invoked to infer the instantiations of these
facts. To do so, metis must first succeed—both the Metis proof (for inferring
the instantiations) and the reconstruction in Isabelle (for ensuring that the
instantiations are type-correct, if an unsound type encoding was used) are
essential.

After instantiating the facts, Sledgehammer’s preplay tries out the proof
with the instantiated facts. Even though metis has already found a proof, this is
beneficial for a number of reasons:

1. The preplay module includes an additional minimization tool that repeatedly
invokes a successful proof method with subsets of the facts. Its purpose is
to reduce the number of facts and thereby simplify the generated Isabelle
proof. Instantiated facts might be redundant and, consequently, can be
eliminated by this minimization. Consider the goal a < −b ←→ b < −a
and the fact x < −y ←→ y < −x. This fact is translated to two Metis
clauses, corresponding to the two implications x < −y −→ y < −x and
y < −x −→ x < −y. Since both clauses are equal up to the naming of
variables, Metis uses only the first one to prove both directions of the goal.
Accordingly, the instantiations {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a}
are inferred, resulting in two instantiated facts. Since only one of these is
necessary, the minimization tool removes one of them.

2. Via a mechanism called try0, preplay tries a variety of proof methods [6],
including multiple metis calls with different options (describing the encoding of
types and λ-abstractions) and other standard proof methods, such as simp [26],
blast [30], and auto [29]. This can result in even faster Isabelle proofs, since
other proof methods are frequently faster than metis but sometimes require
instantiated facts to find any proof at all (as demonstrated in Example 3).
Additionally, Isabelle proofs resulting from methods such as simp, blast, and
auto are often simpler and more readable, since they do not require the user
to provide all the necessary facts for the proof. Minimization removes the
facts that are irrelevant for these proof methods.

3. According to Theorem 1, a new Metis proof derived from the instantiated
Metis clauses is possible. However, this does not necessarily extend to Isabelle
proofs using metis. A new metis proof using the instantiated Isabelle facts may
not be possible, since their encoding is not guaranteed to produce the same
Metis clauses again. This is mostly due to βη-conversion (as demonstrated in
Example 7). This rarely happens in practice but is nonetheless one reason to
preplay the new metis proof.

During preplay, each proof method is executed for a predetermined duration
(called the preplay time limit, which defaults to 1 s). The instantiation of facts
often speeds up proofs, possibly turning timeouts into successes. However, in
order to instantiate the facts, metis must first succeed. Consequently, the metis
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call used to infer the instantiations is given more time than the proof methods
during preplay. More precisely, it is executed for five times the preplay time limit
(i.e., 5 s by default).

An alternative would be to increase the preplay time limit in the first place.
However, this would work less well in practice, because users typically insert the
generated proofs directly into the Isabelle proof text. Given that these are re-
executed each time the text is processed, multiple slow proofs could substantially
increase the overall processing time.

Our Sledgehammer extension can be controlled through the three-valued
Sledgehammer option instantiate. If this option is set to false, the extension is
disabled. If the option is set to true, metis is started with the metis_instantiate
option enabled directly after an ATP has found and minimized a proof, at
the beginning of Sledgehammer’s proof reconstruction module. In most cases,
this leads to Isabelle proofs with instantiated facts; otherwise, a proof without
instantiations is displayed. The latter case may occur if metis is unable to find a
proof (but, e.g., auto is able to), the proof does not use any facts, or there are no
instantiations (e.g., if the facts contain no free variables).

Finally, if the option is set to smart, the instantiation of facts is started only
if preplay failed (i.e., no proof method was successful within the preplay time
limit). If the instantiation was successful, preplay is invoked once more with the
instantiated facts, as usual. Therefore, Isabelle proofs with instantiated facts are
displayed only if metis takes more time than the preplay time limit to prove the
goal from the original facts and instantiation can speed up the proof so that it
takes less time than the preplay time limit (as demonstrated in Example 2).

Although setting the option to true leads to faster, simpler, and more readable
proofs, it is too disruptive. Most users, most of the time, are satisfied with
uninstantiated facts, which are less verbose. They are pleased if they occasionally
get a proof with instantiated facts that would have failed otherwise. Therefore,
we make smart the default.

Extensionality for Metis. Extensionality states that two functions are equal
if they yield the same results for the same arguments. In Isabelle, extensionality
is a basic axiom called ext:

(∀x. f x = g x) −→ f = g

Since Metis targets first-order logic, it is unaware of this principle. Instead, ext
must be passed to metis (which uses a first-order encoding) when extensionality
is required. Since this enlarges the search space, this is not done by default.

However, the need for extensionality can change as facts are instantiated. In
other words, ext may not be necessary for a proof derived from the original facts,
but it may be necessary for a proof derived from the instantiated facts, and vice
versa. This phenomenon is mostly due to Isabelle’s application of βη-conversion.

Example 7. Recall the fact surj f −→ (∃x. f x = y), and suppose that we
want to prove the following goal:

surj (λx. λy. g y x) −→ (∀x. P (λy. g y x)) −→ P h
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To encode the λ-abstractions, we use λ-lifting [19] and thus introduce a new
supercombinator A with the definition A a b = g b a, leading to a new goal:

surj A −→ (∀x. P (A x)) −→ P h

We invoke metis, which infers that f should be instantiated with A and y should
be instantiated with h. As described in Section 4, A is replaced by λa. λb. g a b
again, resulting in the following instantiated fact:

surj (λa. λb. g b a) −→ (∃x. (λb. g b x) = h)

Notice that Isabelle applied β-reduction, resulting in the modified λ-abstraction
λb. g b x. If we attempt a proof with metis and λ-lifting again, this λ-abstraction
will be encoded as another supercombinator B with the definition B a = g a sk,
where sk is the Skolem constant introduced for the existentially quantified
variable x. Using A’s and B’s definitions, Metis can prove that A sk z = B z for
every z, but extensionality is needed to conclude that A sk = B and thus to
exchange the two terms and prove the goal. Therefore, metis can prove the goal
from the instantiated fact only if we add the fact ext.

Thus, ext may be necessary for a proof derived from the instantiated facts.
Conversely, if βη-conversion eliminates λ-abstractions, ext might be unnecessary
for a proof derived from the instantiated facts even though it is needed for a proof
derived from the original facts. Therefore, we also extend the preplay module
so that a few metis calls with the additional fact ext are tried after other proof
methods have failed, including multiple metis calls with different options. These
new metis calls use λ-lifting as the encoding of λ-abstractions, since λ-lifting
benefits more from ext than the SKBCI combinators [22].

The metis calls with the fact ext are also useful regardless of instantiations,
since some ATPs, such as Zipperposition [38], are based on higher-order logic
and already include extensionality. As a result, their proofs do not need ext, and
proof reconstruction might be unsuccessful without the new metis calls.

6 Evaluation

Our empirical evaluation is based on the repository revision d3c0734059ee (Octo-
ber 25, 2024) of Isabelle and 4082096ade5a (October 25, 2024) of the Archive of
Formal Proofs [9].

Setup. We performed the evaluation using the Slurm batch system [21] on
the computer resources of the Institute for Informatics at Ludwig-Maximilians-
Universität München. We requested 32 GiB of RAM and 8 logical processors (CPU
threads). Given that not all Sledgehammer steps and ATPs are deterministic
and time limits are used, the results are not entirely reproducible. To increase
reproducibility, we used a fresh Isabelle installation and reset the state of the
learning-based relevance filter MaSh [8] before each evaluation run.
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We used the testing and evaluation tool Mirabelle [16], which is included
in Isabelle. Mirabelle applies a selected action to each selected goal. We used
the same 50 Archive entries as Desharnais et al. [16], from which we randomly
selected 100 goals per entry, resulting in a total of 5 000 goals. As the action, we
invoked Sledgehammer with several options:

• The try0 option was disabled so that Sledgehammer’s preplay exclusively
tried metis. This was done to test metis extensively, since we extended this
proof method, and to keep the evaluation feasible in reasonable time, since
other proof methods frequently caused the Isabelle process to abort for
technical reasons.

• The provers option for specifying the external ATPs was set to use the
high-performance [16] superposition provers E, Vampire, and Zipperposition.
We excluded satisfiability-modulo-theories (SMT) solvers since these support
theories, such as linear arithmetic, that are not built into metis.

• The strict option was enabled to force the use of sound type encodings for the
external ATPs to produce type-correct proofs that should be reconstructable.

We performed two evaluation runs, with Sledgehammer’s instantiate option
set to smart in the first run and to true in the second run. From the Mirabelle
output of each run, we extracted the number of successful Isabelle proofs with
and without instantiations, the average execution times of Sledgehammer and
metis, and the kinds of metis calls used in the generated Isabelle proofs. With
this information, we try to answer the following research questions:

1. Is it possible to reconstruct additional proofs by instantiating the facts, and
in how many cases is a proof derived from the instantiated facts impossible?

2. What are the advantages of enabling Sledgehammer’s instantiate option? That
is, how often are Isabelle proofs with instantiated facts actually presented to
users, how much longer do Sledgehammer executions take, and how much
faster are Isabelle proofs?

3. What do Sledgehammer-generated metis calls look like after instantiating
the facts, and what are the benefits of adding the fact ext?

Results. We consider only Sledgehammer invocations where an external ATP
has found a proof. Sledgehammer’s proof reconstruction module initially attempts
to generate a one-line proof consisting of a single proof method invoked with
facts, which can now have instantiations thanks to our extensions. If this attempt
is unsuccessful, Sledgehammer tries to transform the ATP proof into an Isar
proof [6]. If this also fails, the proof reconstruction is considered to have failed.
The number of occurrences of each of these outcomes in each evaluation run is
shown in Table 1.

In the first evaluation run, there were a total of 3 373 Sledgehammer invoca-
tions yielding ATP proofs. Whereas 3 128 ATP proofs (92.7%) were reconstructed
directly as one-line proofs without instantiations, 44 additional ATP proofs (1.3%)
could be reconstructed by instantiating the facts and thereby speeding up the
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Table 1. Proof reconstruction for Sledgehammer invocations yielding ATP proofs

One-line proofs

Evaluation run W/o inst. With inst. Isar proofs Failed Total

1 (instantiate = smart) 3 128 44 37 164 3 373
2 (instantiate = true) 805 2 349 45 159 3 358

metis proofs. This number may seem low, but this corresponds to 18.0% of cases
where there was no one-line proof before. The remaining 6.0% of ATP proofs
could not be reconstructed as one-line proofs. This number may seem alarmingly
high, but detailed Isar proofs were available in 1.1% of the cases, and in practice
the try0 option is usually enabled, which leads to further proof methods being
tried in addition to metis. We note that our approach brings similar benefits to
Sledgehammer’s success rate as Isar proof reconstruction.

In the second evaluation run, there were a total of 3 358 Sledgehammer
invocations with ATP proofs. In 2 349 cases (70.0%), Sledgehammer suggested
a one-line proof with instantiated facts. In 805 cases (24.0%), Sledgehammer
suggested a one-line proof without instantiated facts. The raw evaluation data
reveals that in most of these cases, the proof did not use any facts or there were
no instantiations.

However, sometimes the instantiations were successfully inferred, but preplay
failed to generate a metis proof derived from the instantiated facts. According to
the raw data, there were 5 such cases (0.1%) in the first evaluation run and 18
(0.5%) in the second. There are several reasons for this, including the following:

• The instantiations did not speed up the metis proof enough to take less time
than the preplay time limit. The instantiations could have even prolonged
the proof, since they modify the problem and could affect Metis’s heuristics.

• Isabelle’s extremely flexible syntax allows ambiguities and does not guarantee
that all terms can be parsed back [6].

Table 2. Average execution times for a one-line proof

Evaluation run Sledgehammer Generated metis proof

1 (instantiate = smart) 34 185 ms 221 ms
2 (instantiate = true) 34 497 ms 137 ms

Table 2 shows the average execution times of Sledgehammer invocations
that successfully generated a one-line metis proof. The average execution time of
Sledgehammer increased by 312 ms (+0.9%) from the first to the second evaluation
run, which can be explained by the additional time required for instantiating
facts. However, this did not have a substantial impact on the overall duration
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of an average Sledgehammer execution. By contrast, the average execution time
of metis decreased by 84 ms (−38.0%), indicating that the instantiation of facts
markedly speeds up proofs. Notice that in about 25% of cases (805 and 44 in
Table 1), the metis calls generated in the two evaluation runs were both without
or both with instantiations. Consequently, for the remaining 75% of cases, it can
be deduced that the average execution time decreases by more than 38%. If those
proofs are inserted into an Isabelle proof text, this improvement applies every time
the text is processed. In particular, every one of the frequent regression tests of
the Archive of Formal Proofs with its more than 90 000 metis calls could benefit.

In Sledgehammer’s preplay, a series of metis calls are tried, each involving
different options that describe the encoding of types and λ-abstractions. Initially,
the default options (type encoding a [7] and SKBCI combinators [37]) are tested,
resulting in a standard metis call. If this fails, Sledgehammer tries multiple
alternative options, selecting the fastest metis call with options. If this also fails,
Sledgehammer tries the new metis calls with the additional fact ext. The number
of occurrences of each of these kinds of metis calls in one-line proofs in each
evaluation run is shown in Table 3.

Table 3. Kinds of metis calls in one-line proofs

Evaluation run Standard metis With options With ext Total

1 (instantiate = smart) 2 801 318 53 3 172
2 (instantiate = true) 3 008 110 36 3 154

The number of standard metis calls increased from the first evaluation run
(88.3%) to the second (95.4%). This observation suggests that Metis’s proof search
becomes more efficient after the instantiation of facts, since special encodings are
needed less often. Moreover, adding ext was effective, since it was used in 1.7%
and 1.1% of the proofs, respectively, which would have failed otherwise.

Regarding our research question 1, the results show that Sledgehammer can
reconstruct additional one-line proofs by instantiating the facts, and that a
proof derived from the instantiated facts is almost always possible. Regarding
question 2, we observe that enabling Sledgehammer’s instantiate option leads to
proofs with instantiations in 70% of the cases, which may help users understand
the generated proofs. Sledgehammer executions also take a bit longer, but the
execution time of the generated Isabelle proofs is substantially reduced, which is
much more important. Regarding question 3, we see that there are more standard
metis calls without options after instantiating the facts and that adding the fact
ext brings similar benefits to Sledgehammer’s success rate as instantiating facts.

7 Related Work

The Metis ATP [20], on which our work is based, was developed by Hurd with the
goal of integrating it into the HOL proof assistant [18]. Metis was integrated in
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Isabelle by Paulson and Susanto [32]. Metis’s fine-grained proofs were particularly
useful to us. Beyond the HOL and Isabelle integrations, there is also a Metis
proof checker in Agda developed by Prieto-Cubides and Sicard-Ramírez [33].

Our tool joins the ranks of various proof analysis tools. The GAPT (General
Architecture for Proof Theory) framework by Ebner et al. [17] consists of data
structures, algorithms, parsers, and more, with the aim of supporting proof theory
applications and ATPs. Other proof-manipulating frameworks are ProofCert by
Miller and colleagues [14,24] and Dedukti by Dowek and colleagues [1, 11].

Our work is also loosely related to the experimental reconstruction of ATP
proofs as detailed Isabelle proofs, or Isar proofs [40], by Blanchette et al. [6].

8 Conclusion

We extended Isabelle’s metis proof method and the Sledgehammer tool to infer
variable instantiations from proofs and present them to users. This speeds up
Sledgehammer’s proof reconstruction and increases its success rate. It also helps
users to understand the proof without inspecting all of its details.

We see three main directions for future work. First, we could provide type
annotations when parsing of the instantiations is ambiguous. Second, we could
provide instantiations not only for one-line proofs but also for individual steps in
detailed Isar proofs. Third, we could extend the approach to more ATPs in order
to obtain variable instantiations even when metis without instantiations fails.
The superposition provers E, SPASS, Vampire, and Zipperposition are difficult
to integrate, because they fail to preserve the connection between the variables
before and after clausification. The metis proof method’s clausifier, by contrast,
preserves variable names. As for SMT solvers, some of them, including cvc5, can
be asked to output the instantiations they needed to show unsatisfiability. Then
there is no need to analyze the proofs to infer the instantiations.
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