
A Modular Completeness Proof for the
Superposition Calculus

Uwe Waldmann1

Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken,
Germany

Abstract. This paper describes a detailed completeness proof for Bach-
mair’s and Ganzinger’s superposition calculus. The proof follows the
modularization steps given by Waldmann et al.’s saturation framework,
and serves as a blueprint for a formalized completeness proof of super-
position in the interactive proof assistant Isabelle/HOL on top of the
existing formalization of the saturation framework in Isabelle/HOL.

1 Background

Bachmair’s and Ganzinger’s superposition calculus [2, 3] is the standard calculus
for automated theorem proving in quantified equational first-order logic. It forms
the basis of state-of-the-art theorem provers like Vampire [5] and E [7].

Superposition is one example of a saturation calculus – a calculus that gets a
set of formulas (typically clauses) as inputs and processes this set by (i) deriving
new formulas from the given ones and adding them to the formula set and by
(ii) deleting formulas that turn out to be superfluous. This process is repeated
until either a contradiction is found (which then demonstrates that the original
input set was contradictory) or until a saturated set of formulas is reached to
which no further formulas need to be added anymore. The calculus is called
refutationally complete if it has the property that every fair derivation starting
from a contradictory input set eventually detects the contradiction.

Waldmann et al. [9] described a framework to prove the refutational complete-
ness of saturation calculi. The framework was formalized (and extended) in the
interactive proof assistent Isabelle/HOL [6] by Tourret [8] and Blanchette and
Tourret [4]. In the current paper, we present a detailed refutational completeness
proof for the superposition calculus that follows the modularization steps given
in [9] and that can therefore serve as a blueprint for a formalized completeness
proof for the superposition calculus in Isabelle/HOL on top of the work described
in [4, 8].

2 Preliminaries

We assume that the reader is familiar with basic concepts in first-order logic and
with the saturation framework [9]. For standard results and notations in term
rewriting, we refer to Baader and Nipkow [1].

A first-order signature is a triple Σ = (Ξ,Ω,Π), where Ξ is a set of sorts,
Ω is set of function symbols, and Π is set of predicate symbols. (All sets are
disjoint.) Every function symbol f ∈ Ω and predicate symbol P ∈ Π has a unique
declaration f : ξ1 . . . ξn → ξ0 and P : ξ1 . . . ξn, n ≥ 0, ξj ∈ Ξ. Furthermore let X
be a Ξ-sorted set of variables (disjoint from Ξ, Ω, Π). Then TΣ(X) is the set of
(well-sorted) terms over Σ and X.

A (well-sorted) equation is an unordered pair (s, t) of terms with the same
sort, usually written as s ≈ t. A (well-sorted) non-equational atom over Σ and X
has the form P (t1, . . . , tn) with P ∈ Π and ti ∈ TΣ(X). An atom is an equation
or a non-equational atom. A literal is an atom A or a negated atom ¬A. We
usually write s ̸≈ t instead of ¬(s ≈ t). A clause is a multiset of literals, usually
written as a disjunction. The symbol ⊥ denotes the empty clause, that is, false.

In the sequel, all terms, atoms, literals, equations, substitutions are assumed
to be well-sorted.

To simplify the presentation, we will assume from now on that Π = ∅ and that
predicate symbols P : ξ1 . . . ξn are replaced by function symbols fP : ξ1 . . . ξn →
bool, so that non-equational literals [¬]P (t1, . . . , tn) are encoded as equations
[¬] fP (t1, . . . , tn) ≈ true.

We assume that ≻ is a reduction ordering on terms that is total on ground
terms and has the subterm property on ground terms i.e., t[s]p ≻ s if p ̸= ε.
(In the single-sorted case, the subterm property follows from totality on ground
terms, compatibility with contexts, and well-foundedness, but in the multi-sorted
case, we have to require it explicitly.)

3 (Ground) Inference System

Let a fixed first-order signature Σ = (Ξ,Ω,Π) be given. We define G as the
set of ground first-order clauses over Σ and G⊥ as the subset {⊥} ⊆ G. We
denote the first-order (Tarski) entailment relation between subsets of G by |=.
This relation satisfies properties (C1)–(C4) of Waldmann et al. [9]).

Note that for ground formulas, Tarski entailment (i.e., entailment w.r.t. all
Σ-models) agrees with Herbrand entailment (i.e., entailment w.r.t. term-generated
Σ-models).

To avoid duplication, we present ordering extensions, selection functions, and
inference rules for general clauses, even though we currently need them only for
ground clauses.

The term ordering ≻ is extended to a literal ordering and a clause ordering
in the following way: To every positive literal s ≈ t, we assign the multiset
{s, t}, to every negative literal s ̸≈ t, we assign the multiset {s, s, t, t}. The literal
ordering ≻L compares these multisets using the multiset extension of ≻. The
clause ordering ≻C compares clauses by comparing their multisets of literals
using the multiset extension of ≻L. We say that a literal L is maximal (strictly
maximal) in a clause C, if there is no other literal in C that is greater (greater
or equal) than L w.r.t. ≻L.

2

Note that s ≈ t and t ≈ s are mapped to the same multiset (and analogously
for negative literals), so ≻L is well-defined.

The multiset extension of an ordering that is stable under substitutions is
again stable under substitutions, so ≻L is also stable under substitutions.

A selection function S maps every clause to a submultiset of its negative
literals.

For clauses C and D let rename(D,C) be an arbitrary but fixed renaming
substitution ρ such that Dρ and C are variable-disjoint. (In particular, if C and
D are variable-disjoint, rename(D,C) is the identity substitution).

Inference rules for superposition with ordering ≻ and selection function
S. Recall that we consider equations as unordered pairs of terms, so that all
inference rules are to be read modulo symmetry of the equality symbol.

In the non-ground case, we apply a renaming substitution ρ to the first premise
of a binary inference to ensure that the premises become variable-disjoint.

Pos. Superposition:

D′ ∨ t ≈ t′ C ′ ∨ s[u] ≈ s′

(D′ρ ∨ C ′ ∨ s[t′ρ] ≈ s′)σ

where ρ = rename(D′ ∨ t ≈ t′, C ′ ∨ s[u] ≈ s′),
σ = mgu(tρ, u) and u is not a variable,
(D′ ∨ t ≈ t′)ρσ ̸⪰C (C ′ ∨ s[u] ≈ s′)σ,
no literal is selected by S in the premises,
(t ≈ t′)ρσ is strictly maximal in (D′ ∨ t ≈ t′)ρσ,
(s[u] ≈ s′)σ is strictly maximal in (C ′ ∨ s[u] ≈ s′)σ,
tρσ ̸⪯ t′ρσ,
s[u]σ ̸⪯ s′σ.

Neg. Superposition:

D′ ∨ t ≈ t′ C ′ ∨ s[u] ̸≈ s′

(D′ρ ∨ C ′ ∨ s[t′ρ] ̸≈ s′)σ

where ρ = rename(D′ ∨ t ≈ t′, C ′ ∨ s[u] ̸≈ s′),
σ = mgu(tρ, u) and u is not a variable,
(D′ ∨ t ≈ t′)ρσ ̸⪰C (C ′ ∨ s[u] ̸≈ s′)σ,
no literal is selected by S in the left premise,
(t ≈ t′)ρσ is strictly maximal in (D′ ∨ t ≈ t′)ρσ,
either s[u] ̸≈ s′ is selected by S in the right premise

or no literal is selected by S in the right premise
and (s[u] ̸≈ s′)σ is maximal in (C ′ ∨ s[u] ̸≈ s′)σ,

tρσ ̸⪯ t′ρσ,
s[u]σ ̸⪯ s′σ.

3

Equality Resolution:

C ′ ∨ s ̸≈ s′

C ′σ

where σ = mgu(s, s′),
either s ̸≈ s′ is selected by S in the premise

or no literal is selected by S in the premise
and (s ̸≈ s′)σ is maximal in (C ′ ∨ s ̸≈ s′)σ.

Equality Factoring:

C ′ ∨ t ≈ t′ ∨ s ≈ s′

(C ′ ∨ s′ ̸≈ t′ ∨ s ≈ t′)σ

where σ = mgu(s, t),
no literal is selected by S in the premise,
(s ≈ s′)σ is maximal in (C ′ ∨ t ≈ t′ ∨ s ≈ s′)σ,
sσ ̸⪯ s′σ.

(These are the most commonly found restrictions for negative superposition
and equality resolution, but not the strongest ones. To strengthen the restrictions,
one can replace “L is selected by S in C” by “L is selected by S in C and Lσ
is maximal in CSσ, where CS is the subclause of C consisting of the literals
selected by S”.)

The G-inference system GInf ≻,S consists of all ground inferences (C2, C1, C0)
and (C1, C0) of the superposition calculus that satisfy the side conditions for ≻
and S. The formulas Cn, . . . , C1 are called premises of an inference ι, C0 is called
the conclusion of ι, denoted by concl(ι). If N ⊆ G, we write GInf ≻,S(N) for the
set of all inferences in GInf ≻,S whose premises are contained in N .

We define the redundancy criterion Red≻,S = (Red≻,S
I ,Red≻,S

F) for GInf ≻,S

as follows:

• Let N ⊆ G. An inference ι ∈ GInf ≻,S is contained in Red≻,S
I (N) if M |=

concl(ι), where M is the set of all clauses in N that are smaller than the
right (or only) premise of ι.

• Let N ⊆ G. A clause C ∈ G is contained in Red≻,S
F (N) if M |= C, where M

is the set of all clauses in N that are smaller than C.

By compactness of first-order logic, this is equivalent to “. . . where M is some
finite set of clauses in N that are smaller than the right (or only) premise of
ι / that are smaller than C”.

Inferences in Red≻,S
I (N) and formulae in RedF(N)≻,S are called redundant

w.r.t. N .
Red≻,S satisfies properties (R1)–(R4) of Waldmann et al. [9]. Since we keep

≻ fixed in the sequel, we will usually omit the superscript ≻ and write GInf S

and RedS instead of GInf ≻,S and Red≻,S .

4

4 Ground Refutational Completeness

A set N ⊆ G is saturated w.r.t. GInf S and RedS if GInf S(N) ⊆ RedS
I (N). The

pair (GInf S ,RedS) is statically refutationally complete w.r.t. |= if ⊥ ∈ N for
every saturated set N ⊆ G with N |= {⊥}.

For any set E of ground equations, TΣ(∅)/E is an E-interpretation (or E-
algebra) with universe { [t]E | t ∈ TΣ(∅) }, where [t]E = { t′ ∈ TΣ(∅) | E |= t ≈ t′ }
is the E-congruence class of t ∈ TΣ(∅).

One can show (similar to the proof of Birkhoff’s Theorem) that for every
ground equation s ≈ t we have E |= s ≈ t if and only if TΣ(∅)/E |= s ≈ t if and
only if s↔∗

E t.
In particular, if E is a convergent set of rewrite rules R and s ≈ t is a ground

equation, then TΣ(∅)/R |= s ≈ t if and only if s ↓R t (i.e., s→∗
R u←∗

R t for some
u). By abuse of terminology, we say that an equation or clause is valid (or true)
in R if and only if it is true in TΣ(∅)/R.

Our refutational completeness proof follows Bachmair and Ganzinger [2, 3]:
Given a subset N ⊆ G with ⊥ /∈ N , we first construct a candidate interpretation,
that is, a convergent set of rewrite rules R∞. Afterwards we use well-founded
induction to show that for a saturated set N , R∞ is actually a model of N .

Let N ⊆ G be a set of clauses not containing ⊥. Using induction on the clause
ordering we define sets of rewrite rules EC and RC for all C ∈ N as follows:

Assume that ED has already been defined for all D ∈ N with D ≺C C. Then
RC =

⋃
D≺CC

ED. The set EC contains the rewrite rule s→ t, if

(a) C = C ′ ∨ s ≈ t.
(b) no literal is selected in C.
(c) s ≈ t is strictly maximal in C.
(d) s ≻ t.
(e) C is false in RC .
(f) C ′ is false in RC ∪ {s→ t}.
(g) s is irreducible w.r.t. RC .

In this case, C is called productive. Otherwise EC = ∅. Finally, we define R∞ =⋃
D∈N ED.

Lemma 1. If EC = {s → t} and ED = {u → v}, then s ≻ u if and only if
C ≻C D.

Proof. (⇒): By condition (c), s ≈ t is strictly maximal in C and u ≈ v is strictly
maximal in D, and since the literal ordering is total on ground literals, this
implies that all other literals in C or in D are actually smaller than s ≈ t or
u ≈ v, respectively.

Moreover, s ≻ t and u ≻ v by condition (d). Therefore s ≻ u implies
{s, t} ≻mul {u, v}. Hence s ≈ t ≻L u ≈ v ⪰L L for every literal L of D, and thus
C ≻C D.

(⇐): Let C ≻C D, then ED ⊆ RC . By condition (g), s must be irreducible
w.r.t. RC , so s ̸= u.

5

Assume that s ̸≻ u. By totality, this implies s ⪯ u, and since s ̸= u, we obtain
s ≺ u. But then C ≺C D can be shown in the same way as in the (⇒)-part,
contradicting the assumption. ⊓⊔

Corollary 2. The rewrite systems RC and R∞ are convergent (i.e., terminating
and confluent).

Proof. By condition (d), s ≻ t for all rules s→ t in RC and R∞, so RC and R∞
are terminating.

Furthermore, it is easy to check that there are no critical pairs between any
two rules: Assume that there are rules u→ v in ED and s→ t in EC such that u
is a subterm of s. As ≻ is a reduction ordering that is total on ground terms, we
get u ≺ s and therefore D ≺C C and ED ⊆ RC . But then s would be reducible
by RC , contradicting condition (g).

Now the absence of critical pairs implies local confluence, and termination
and local confluence imply confluence. ⊓⊔

Lemma 3. If D ⪯C C and EC = {s→ t}, then s ≻ u for every term u occurring
in a negative literal in D and s ⪰ u for every term u occurring in a positive literal
in D.

Proof. If s ⪯ u for some term u occurring in a negative literal u ̸≈ v in D, then
{u, u, v, v} ≻mul {s, t}. So u ̸≈ v ≻L s ≈ t ⪰L L for every literal L of C, and
therefore D ≻C C.

Similarly, if s ≺ u for some term u occurring in a positive literal u ≈ v in
D, then {u, v} ≻mul {s, t}. So u ≈ v ≻L s ≈ t ⪰L L for every literal L of C, and
therefore D ≻C C. ⊓⊔

Corollary 4. If D ∈ N is true in RD, then D is true in R∞ and RC for all
C ≻C D.

Proof. If a positive literal s ≈ t of D is true in RD, then s ↓RD
t. Since RD ⊆ RC

and RD ⊆ R∞, we have s ↓RC
t and s ↓R∞ t, so s ≈ t is true in RC and R∞.

Otherwise, some negative literal s ̸≈ t of D must be true in RD, hence s ̸ ↓RD
t.

As the rules in R∞ \RD have left-hand sides that are larger than s and t, they
cannot be used in a rewrite proof of s ↓ t, hence s ̸ ↓RC

t and s ̸ ↓R∞ t. ⊓⊔

Corollary 5. If D = D′ ∨ u ≈ v is productive, then D′ is false and D is true in
R∞ and RC for all C ≻C D.

Proof. Obviously, D is true in R∞ and RC for all C ≻C D.
Since all negative literals of D′ are false in RD, it is clear that they are false

in R∞ and RC . For the positive literals u′ ≈ v′ of D′, condition (f) ensures that
they are false in RD ∪{u→ v}. Since u′ ⪯ u and v′ ⪯ u and all rules in R∞ \RD

have left-hand sides that are larger than u, these rules cannot be used in a rewrite
proof of u′ ↓ v′, hence u′ ̸ ↓RC

v′ and u′ ̸ ↓R∞ v′. ⊓⊔

6

Theorem 6 (“Model Construction”). Let N be a set of clauses that is
saturated and does not contain the empty clause. Then we have for every ground
clause C ∈ N :

(i) EC = ∅ if and only if C is true in RC .
(ii) C is true in R∞ and in RD for every D ∈ N with D ≻C C.

Proof. We use induction on the clause ordering ≻C and assume that (i) and (ii)
are already satisfied for all clauses in N that are smaller than C. Note that the
“if” part of (i) is obvious from the construction and that condition (ii) follows
immediately from (i) and Corollaries 4 and 5. So it remains to show the “only if”
part of (i).

Case 1: C contains selected literals or a maximal negative literal. Suppose
that C = C ′ ∨ s ̸≈ s′, where s ̸≈ s′ is a selected literal of C if C has selected
literal, and where s ̸≈ s′ is a maximal literal of C if C does not have selected
literals. If s ≈ s′ is false in RC , then C is clearly true in RC and we are done. So
assume that s ≈ s′ is true in RC , that is, s ↓RC

s′. Without loss of generality,
s ⪰ s′.

Case 1.1: s = s′. If s = s′, then there is an equality resolution inference

C ′ ∨ s ̸≈ s′

C ′ .

As N is saturated, this inference is contained in RedS
I (N). So M |= C ′, where M

is the set of all clauses in N that are smaller than C. By the induction hypothesis,
all clauses in M are true in RC , therefore C ′ and C are true in RC .

Case 1.2: s ≻ s′. By definition, s ↓RC
s′ means s→∗

RC
u←∗

RC
s′ for some term

u. Since s′ →∗
RC

u, we know that s′ ⪰ u. If s ≻ s′, then the derivation s→∗
RC

u
cannot be empty, so it has the form s = s[t]→RC

s[t′]→∗
RC

u, where t→ t′ is
a rule in ED ⊆ RC for some D ∈ N with D ≺C C. Let D = D′ ∨ t ≈ t′ with
ED = {t→ t′}. By property (b), no literal in D may be selected. Consequently,
there is a negative superposition inference

D′ ∨ t ≈ t′ C ′ ∨ s[t] ̸≈ s′

D′ ∨ C ′ ∨ s[t′] ̸≈ s′

from D and C. As N is saturated, this inference is contained in RedS
I (N). So its

conclusion D′ ∨ C ′ ∨ s[t′] ̸≈ s′ is entailed by the set M of all clauses in N that
are smaller than C. By the induction hypothesis, all clauses in M are true in RC ,
therefore the conclusion is true in RC . Since D is productive, D′ is false in RC

by Cor. 5. Moreover, s[t′]→∗
RC

u←∗
RC

s′, so s[t′] ̸≈ s′ is also false in RC . Since
D′ and s[t′] ̸≈ s′ are false in RC , C ′ must be true, and therefore C is also true in
RC .

Case 2: C contains neither selected literals nor a maximal negative literal. If
C does not fall into Case 1, it must have the form C ′ ∨ s ≈ s′, where s ≈ s′ is a
maximal literal of C. If EC = {s→ s′} or C ′ is true in RC or s = s′, then there
is nothing to show, so assume that EC = ∅ and that C ′ is false in RC . Without
loss of generality, s ≻ s′.

7

Case 2.1: s ≈ s′ is maximal in C, but not strictly maximal. If s ≈ s′ is maximal
in C, but not strictly maximal, then C can be written as C ′′ ∨ s ≈ s′ ∨ s ≈ s′.
In this case, there is a equality factoring inference

C ′′ ∨ s ≈ s′ ∨ s ≈ s′

C ′′ ∨ s′ ̸≈ s′ ∨ s ≈ s′

As in Case 1, saturation implies that the conclusion is true in RC . Since s′ = s′

implies s′ ↓RC
s′, we know that s′ ̸≈ s′ is false in RC . So C ′′ ∨ s ≈ s′ must be

true, and therefore C is also true in RC .
Case 2.2: s ≈ s′ is strictly maximal in C and s is reducible. Suppose that

s ≈ s′ is strictly maximal in C and s is reducible by some rule in ED ⊆ RC . Let
D = D′ ∨ t ≈ t′ and ED = {t → t′}. By property (b), no literal in D may be
selected. Consequently, there is a positive superposition inference

D′ ∨ t ≈ t′ C ′ ∨ s[t] ≈ s′

D′ ∨ C ′ ∨ s[t′] ≈ s′

from D and C. Again, saturation implies that the conclusion is true in RC . Since
D is productive, D′ is false in RC by Cor. 5. Since D′ and C ′ are false in RC ,
s[t′] ≈ s′ must be true in RC , that is, s[t′]→∗

RC
u←∗

RC
s′. On the other hand,

s[t]→RC
s[t′], so s[t] ↓RC

s′, which means that s[t] ≈ s′ and C are true in RC .
Case 2.3: s ≈ s′ is strictly maximal in C and s is irreducible. Suppose that

s ≈ s′ is strictly maximal in C and s is irreducible by RC . Then conditions
(a)–(d) and (g) for productivity are satisfied. If C is productive, there is nothing
to show. If C is not productive, then either property (e) or (f) must be violated.
If (e) is violated, that is, if C is true in RC , there is again nothing to show.
Let us therefore assume that (e) holds but (f) does not hold, that is, C (and
hence C ′) is false in RC but C ′ is true in RC ∪ {s→ s′}. Clearly any negative
literal that is true in RC ∪ {s → s′} is also true in RC . So C ′ must have the
form C ′ = C ′′ ∨ t ≈ t′, where the positive literal t ≈ t′ is true in RC ∪ {s→ s′}
and false in RC . In other words, t ↓RC∪{s→s′} t′, but not t ↓RC

t′. Consequently,
there is a rewrite proof of t →∗ u ←∗ t′ by RC ∪ {s → s′} in which the rule
s → s′ is used at least once. Without loss of generality we assume that t ⪰ t′.
If t were strictly smaller than s, it would be impossible to use s → s′ in the
rewrite proof. If t were strictly larger than s (which is again larger than s′), then
s ≈ s′ ≺L t ≈ t′, contradicting the assumption that s ≈ s′ is strictly maximal in
C. So we have s = t. Moreover, since s ≈ s′ is strictly maximal in C, we must have
t = s ≻ s′ ≻ t′. From t ≻ t′ we conclude that the rewrite proof of t→∗ u←∗ t′

has the form t → t′′ →∗ u ←∗ t′. Since t ≻ t′′ and t ≻ t′, every left-hand side
of a rule used in t′′ →∗ u←∗ t′ must be strictly smaller than t. Because s→ s′

must be used at least once in t→ t′′ →∗ u←∗ t′ and cannot be used after the
first step, the rewrite proof has the form t = s→ s′ →∗ u←∗ t′, where the first
step uses s→ s′ and all other steps use rules from RC . Consequently, s′ ≈ t′ is
true in RC . Now observe that there is an equality factoring inference

C ′′ ∨ t ≈ t′ ∨ s ≈ s′

C ′′ ∨ s′ ̸≈ t′ ∨ t ≈ t′

8

whose conclusion is true in RC by saturation. Since the literal s′ ̸≈ t′ must be
false in RC , the rest of the clause must be true in RC , and therefore C must
be true in RC , contradicting our assumption. This concludes the proof of the
theorem. ⊓⊔

Corollary 7 (“Static Refutational Completeness”). The pair (GInf S ,RedS)
is statically refutationally complete w.r.t. |= for every selection function S.

Proof. Let N be a subset of G that does not contain ⊥. By part (ii) of the model
construction theorem, the interpretation R∞ (that is, TΣ(∅)/R∞) is a model of
all clauses in N . ⊓⊔

5 Lifting

We will now lift the completeness result for ground first-order clauses to a
completeness result for general first-order clauses.

Let F be the set of first-order clauses over Σ; let F⊥ be the subset {⊥} ⊆
F. The F-inference system FInf ≻,S consists of all inferences (C2, C1, C0) and
(C1, C0) of the superposition calculus that satisfy the side conditions for ≻ and
S. The formulas Cn, . . . , C1 are called premises of an inference ι, C0 is called the
conclusion of ι, denoted by concl(ι). If N ⊆ F, we write FInf ≻,S(N) for the set
of all inferences in FInf ≻,S whose premises are contained in N .

A selection function T for G is a grounding of a selection function S for F, if
for every D ∈ G there exists some C ∈ F such that D = Cθ and T (D) = (S(C))θ,
that is, if for every clause D ∈ G the literals selected by T in D correspond
to the literals selected by S in some C ∈ F such that D = Cθ. The set of all
groundings of a selection function S is denoted by gs(S).

If ι = (C1, C0) is an inference in FInf ≻,S and θ is a substitution such that
C1θ, C0θ ∈ G, then (C1θ, C0θ) is called a pre-instance of ι. Analogously, if
ι = (C2, C1, C0) is an inference in FInf ≻,S , ρ = rename(C2, C1), and θ is a
substitution such that C2ρθ, C1θ, C0θ ∈ G, then (C2ρθ, C1θ, C0θ) is called a
pre-instance of ι.

Let ι be an inference (C1, C0) or (C2, C1, C0) in FInf ≻,S , let ι′ be a pre-
instance (C1θ, C0θ) or (C2ρθ, C1θ, C0θ) of ι, and let T ∈ gs(S). Then ι′ is called
a T -ground instance of ι if it is a G-inference in GInf ≻,T and T (C1θ) = (S(C1))θ
(and T (C2ρθ) = (S(C2))ρθ).

Note that the definition of a T -ground instance depends implicitly on S. In
fact, it is possible that ι is an inference in both FInf ≻,S1 and FInf ≻,S2 and
T ∈ gs(S1) ∩ gs(S2), and that the pre-instance ι′ is a T -ground instance of ι, if
we consider ι as an FInf ≻,S1 inference, but not, if we consider ι as an FInf ≻,S2

inference. In a formalized proof, one should rather talk about (S, T)-ground
instances instead of T -ground instances.

Let S be a selection function for F, Let T ∈ gs(S) be a selection function for
G. We define the grounding function GT as follows:

• For a clause C ∈ F, GT (C) = {Cθ | Cθ ∈ G } is the set of all ground
instances of C.

9

• For an F-inference ι ∈ FInf ≻,S , GT (ι) is the set of all T -ground instances
of ι.

The function G is extended to sets S of formulas or inferences by defining
G(S) =

⋃
x∈S G(x).

GT satisfies properties (G1)–(G3) of grounding functions of Waldmann et
al. [9]; in fact, it also satisfies (G3′), which implies (G3).

For T ∈ gs(S), the GT -lifting of |= is the relation |=GT ⊆ P(F)×P(F) defined
by N1 |=GT

N2 if and only if GT (N1) |= GT (N2). Note that for sets N of clauses,
GT (N) is independent of T , which implies that |=GT

is also independent of T . In
fact, |=GT

is the Herbrand entailment relation |=H for sets of first-order clauses
(which in turn is equivalent to the standard (Tarskian) entailment relation |=T

for sets of first-order clauses as long as we are only interested in refutations, i.e.,
N |=H ⊥ holds if and only if N |=T ⊥ holds). Trivially, the intersection |=∩ of all
|=GT

for T ∈ gs(S) is again |=H.
We define the GT -lifting RedGT

= (RedGT

I ,RedGT

F) of RedT with RedGT

I :

P(F)→ P(FInf ≻,S) and RedGT

F : P(F)→ P(F) by ι ∈ RedGT

I (N) if and only if
GT (ι) ⊆ RedT

I (GT (N)) and C ∈ RedGT

F (N) if and only if GT (C) ⊆ RedT
F(GT (N)).

For every T ∈ gs(S), RedGT

is a redundancy criterion for FInf ≻,S and
|=H by Thm. 30 of Waldmann et al. [9]. Moreover, the intersection Red∩ =⋂

T∈gs(S) Red
GT

is a redundancy criterion for FInf ≻,S and |=H by Thm. 24 of [9].

Lemma 8. Let C = C ′ ∨ s ̸≈ s′ ∈ F, let θ be a substitution such that Cθ ∈ G.
Let S be a selection function for F, let T ∈ gs(S) be a selection function for G
such that T (Cθ) = (S(C))θ. Let

ι =
C ′θ ∨ sθ ̸≈ s′θ

C ′θ

with sθ = s′θ be an equality resolution inference in GInf ≻,T from Cθ. Then ι is
a T -ground instance of an equality resolution inference in FInf ≻,S from C.

Proof. Since sθ = s′θ, the terms s and s′ are unifiable. Let σ be an idempotent
most general unifier of s and s′ such that θ = σ ◦ τ . Note that by idempotence,
σ ◦ θ = σ ◦ σ ◦ τ = σ ◦ τ = θ.

Suppose that ι is an equality resolution inference in GInf ≻,T from Cθ. Then
either sθ ̸≈ s′θ is selected in Cθ by T or no literal is selected in Cθ by T and
sθ ̸≈ s′θ is maximal in Cθ. Since T (Cθ) = (S(C))θ, in the first case s ̸≈ s′

is selected in C by S, and in the second case no literal is selected in C by S.
Moreover, in the second case, sσ ̸≈ s′σ must be a maximal literal in Cσ (if it
were not maximal, then Lσ ≻L sσ ̸≈ s′σ for some other literal Lσ in Cσ, hence
Lθ = Lστ ≻L sστ ̸≈ s′στ = sθ ̸≈ s′θ for a literal Lθ in Cθ, contradicting the
maximality of sθ ̸≈ s′θ). Therefore

ι′ =
C ′ ∨ s ̸≈ s′

C ′σ

10

is an equality resolution inference in FInf ≻,S from C. Moreover C ′σθ = C ′θ, and
by assumption T (Cθ) = (S(C))θ, so ι ∈ GT (ι′). ⊓⊔

Lemma 9. Let C = C ′ ∨ t ≈ t′ ∨ s ≈ s′ ∈ F, let θ be a substitution such that
Cθ ∈ G. Let S be a selection function for F, let T ∈ gs(S) be a selection function
for G such that T (Cθ) = (S(C))θ. Let

ι =
C ′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′θ ∨ s′θ ̸≈ t′θ ∨ sθ ≈ t′θ

with sθ = tθ be an equality factoring inference in GInf ≻,T from Cθ. Then ι is a
T -ground instance of an equality factoring inference in FInf ≻,S from C.

Proof. Since sθ = tθ, the terms s and t are unifiable. Let σ be an idempotent
most general unifier of s and t such that θ = σ ◦ τ . Note that by idempotence,
σ ◦ θ = σ ◦ σ ◦ τ = σ ◦ τ = θ.

Suppose that ι is an equality factoring inference in GInf ≻,T from Cθ. Then
no literal is selected in Cθ by T , and since T (Cθ) = (S(C))θ, this implies that
no literal is selected in C by S. Furthermore sθ ≈ s′θ must be a maximal
literal in Cθ, which implies that sσ ≈ s′σ must be a maximal literal in Cσ.
Finally, we know that sθ ≻ s′θ, hence sσ ̸⪯ s′σ (since sσ ⪯ s′σ would imply
sθ = sστ ⪯ s′στ = s′θ). Therefore

ι′ =
C ′ ∨ t ≈ t′ ∨ s ≈ s′

(C ′ ∨ s′ ̸≈ t′ ∨ s ≈ t′)σ

is an equality factoring inference in FInf ≻,S from C. Moreover (C ′ ∨ s′ ̸≈ t′ ∨ s ≈
t′)σθ = (C ′ ∨ s′ ̸≈ t′ ∨ s ≈ t′)θ, and by assumption T (Cθ) = (S(C))θ, so
ι ∈ GT (ι′). ⊓⊔

Lemma 10. Let D = D′ ∨ t ≈ t′ and C = C ′ ∨ [¬] s ≈ s′ be two clauses in
F; let θ1 and θ2 be substitutions such that Dθ2 ∈ G and Cθ1 ∈ G. Let S be a
selection function for F, let T ∈ gs(S) be a selection function for G such that
T (Cθ1) = (S(C))θ1 and T (Dθ2) = (S(D))θ2. Let

ι =
D′θ2 ∨ tθ2 ≈ t′θ2 C ′θ1 ∨ [¬] sθ1[v]p ≈ s′θ1

D′θ2 ∨ C ′θ1 ∨ [¬] sθ1[t′θ2]p ≈ s′θ1

with tθ2 = v = sθ1|p be a positive or negative superposition inference in GInf ≻,T

from Dθ2 and Cθ1. If p is a position of s and s|p is not a variable, then ι is a
T -ground instance of a superposition inference in FInf ≻,S from D and C.

Proof. We consider the case of negative superposition inferences, the proof for
positive superposition inferences is similar.

Let ρ = rename(D,C), then Dρ and C are variable-disjoint. Define the
substitution θ by xθ = xθ1 if x is a variable of C and xθ = xρ−1θ2 if x is a
variable of Dρ. Clearly Cθ = Cθ1 and Dρθ = Dρρ−1θ2 = Dθ2.

11

Assume that p is a position of s and that s|p is not a variable. Let u = s|p.
Then tρθ = tθ2 = v = uθ and we have sθ = sθ[v]p = sθ[uθ]p = (s[u]p)θ and
sθ[t′ρθ]p = (s[t′ρ]p)θ. Since tρθ = uθ, the terms tρ and u are unifiable. Let σ be
an idempotent most general unifier of tρ and u such that θ = σ ◦ τ . Note that by
idempotence, σ ◦ θ = σ ◦ σ ◦ τ = σ ◦ τ = θ.

Suppose that ι is a negative resolution inference in GInf ≻,T from Dθ and Cθ.
Then either sθ ̸≈ s′θ is selected in Cθ by T or no literal is selected in Cθ by T
and sθ ̸≈ s′θ is maximal in Cθ. Since T (Cθ) = (S(C))θ, in the first case s ̸≈ s′

is selected in C by S, and in the second case no literal is selected in C by S, and
moreover, in the second case, sσ ̸≈ s′σ must be a maximal literal in Cσ.

Similarly, no literal may be selected in Dρθ by T and tρθ ≈ t′ρθ must be
strictly maximal in Dρθ. Since T (Dρθ) = (S(D))ρθ, this implies that zno literal
is selected in D by S and that tρσ ≈ t′ρσ must be a strictly maximal literal in
Dρσ.

Finally, tρθ ≻ t′ρθ, s[u]θ ≻ s′θ, and Dρθ ̸⪰C Cθ, from which we conclude
that tρσ ̸⪯ t′ρσ, s[u]σ ̸⪯ s′σ, and Dρσ ̸⪰C Cσ.

Therefore
ι′ =

D′ ∨ t ≈ t′ C ′ ∨ s[u]p ̸≈ s′

(D′ρ ∨ C ′ ∨ s[t′ρ]p ̸≈ s′)σ

is a negative superposition inference in FInf ≻,S from D and C. Moreover Dρθ =
Dθ2 and thus T (Dρθ) = T (Dθ2) = (S(D))θ2 = (S(D))ρθ, Cθ = Cθ1 and thus
T (Cθ) = T (Cθ1) = (S(C))θ1 = (S(C))θ, and (D′ρ ∨ C ′ ∨ s[t′ρ] ̸≈ s′)σθ =
(D′ρ ∨ C ′ ∨ s[t′ρ] ̸≈ s′)θ = (D′θ2 ∨ C ′θ1 ∨ sθ1[t

′θ2] ̸≈ s′θ1), so ι ∈ GT (ι′). ⊓⊔

Lemma 11. Let N ⊆ F. Let S be a selection function for F and let T ∈ gs(S)
be a selection function for G, such that for every D ∈ GT (N) there exists some
C ∈ N and a some substitution θ such that D = Cθ and T (D) = (S(C))θ. Then
GInf ≻,T (GT (N)) ⊆ GT (FInf ≻,S(N)) ∪ RedT

I (GT (N)).

Proof. Let ι be an inference in GInf ≻,T from premises Dn, . . . , D1 ∈ GT (N)
(with n ∈ {1, 2}). By assumption, there exist Cn, . . . , C1 ∈ N and substitutions
θi such that Di = Ciθi and T (Di) = (S(Ci))θi.

If ι is an equality resolution inference with premise D1 = D′ ∨ v ̸≈ v′, then
C1 must have the form C ′ ∨ s ̸≈ s′ with C ′θ1 = D′, sθ1 = v, and s′θ1 = v′. By
Lemma 8, ι ∈ GT (ι′) for some ι′ ∈ FInf ≻,S(N).

If ι is an equality factoring inference with premise D1 = D′ ∨ v ≈ v′ ∨ v ≈ v′′,
then C1 must have the form C ′ ∨ t ≈ t′ ∨ s ≈ s′ with C ′θ1 = D′, sθ1 = tθ1 = v,
t′θ1 = v′, and s′θ1 = v′′. By Lemma 9, ι ∈ GT (ι′) for some ι′ ∈ FInf ≻,S(N).

Otherwise, ι is a positive or negative superposition inference with premises
D2 = D′

2 ∨ v ≈ v′ and D1 = D′
1 ∨ [¬]u[v]p ≈ u′. Then C2 and C1 must have

the form C2 = C ′
2 ∨ t ≈ t′ and C1 = C ′

1 ∨ [¬] s ≈ s′ with C ′
2θ2 = D′

2, tθ2 = v,
t′θ2 = v′, and C ′

1θ1 = D′
1, sθ1 = u[v]p, s′θ1 = u′.

If p is a position of s and s|p is not a variable, then ι ∈ GT (ι′) for some
ι′ ∈ FInf ≻,S(N) by Lemma 10.

Otherwise let p′ be the longest prefix of p that is a position of s and let
p = p′p′′. The subterm s|p′ must be a variable x. Define the substitution θ′1 by

12

xθ′1 = xθ1[v
′]p′′ and yθ′1 = yθ1 for every variable y of C1 different from x. Clearly,

C1θ
′
1 ∈ GT (N), and since v ≻ v′ we have xθ1 = xθ1[v]p′′ ≻ xθ1[v

′]p′′ = xθ′1 and
thus D1 = C1θ1 ≻C C1θ

′
1. Furthermore, we already know from the definition of

superposition inferences that D1 ≻C D2. We will show that C1θ
′
1 and D2 entail the

conclusion D′
2∨D′

1∨ [¬]u[v′]p ≈ u′ of ι: Suppose that C1θ
′
1 and D2 = D′

2∨v ≈ v′

hold in some interpretation. If D′
2 holds, then the conclusion holds trivially.

Otherwise, v ≈ v′ holds in that interpretation, then xθ1[v]p′′ ≈ xθ1[v
′]p′′ holds

by congruence, and since xθ1 = xθ[v]p′′ and xθ′1 = xθ1[v
′]p′′ , we know that

xθ1 ≈ xθ′1 holds. Moreover, yθ1 ≈ yθ′1 holds for every variable y different from x.
Since C1θ

′
1 holds in the interpretation by assumption, congruence implies that

C1θ1 = D′
1 ∨ [¬]u[v]p ≈ u′ holds in the interpretation. Once more by congruence,

D′
1 ∨ [¬]u[v′]p ≈ u′ holds, so the conclusion of ι must hold as well. Therefore, the

conclusion of ι is entailed by C1θ
′
1 and D2; both clauses are contained in GT (N)

and smaller than the right premise of ι; so ι ∈ RedT
I (GT (N)). ⊓⊔

By Lemma 31 of Waldmann et al. [9], we get immediately:

Lemma 12. Let N ⊆ F. Let S be a selection function for F and let T ∈ gs(S)
be a selection function for G, such that for every D ∈ GT (N) there exists some
C ∈ N and a some substitution θ such that D = Cθ and T (D) = (S(C))θ. If N
is saturated w.r.t. FInf ≻,S and RedGT

, then GT (N) is saturated w.r.t. GInf ≻,T

and RedT .

From this, static refutational completeness of (FInf ≻,S ,Red∩) follows by
choosing an appropriate selection function T ∈ gs(S) for a given saturated set N :

Theorem 13. (FInf ≻,S ,Red∩) is statically refutationally complete.

Proof. Let N ⊆ F be saturated w.r.t. FInf ≻,S and Red∩. Suppose that ⊥ /∈ N .
We define a selection function T ∈ gs(S) as follows: If there exists a C ∈ N
such that D = Cθ for some θ, we set T (D) = (S(C))θ for some C ∈ N with
this property; otherwise we set T (D) = (S(C))θ for an arbitrary C ∈ F such
that D = Cθ. Since N is saturated w.r.t. FInf ≻,S and Red∩, N is saturated
w.r.t. FInf ≻,S and RedGT

. So, by the previous lemma, GT (N) is saturated w.r.t.
GInf ≻,T and RedT . Since ⊥ /∈ GT (N), the static refutational completeness of
GInf ≻,T implies GT (N) ̸|= {⊥} = GT ({⊥}), hence N ̸|=GT {⊥}, and hence
N ̸|=H ⊥. ⊓⊔

The quantification over all T ∈ gs(S) in the definition of Red∩ looks rather
complicated. We observe, however, that RedGT

F doesn’t depend on T anyhow,
so that Red∩

F agrees with RedGT

F for an arbitrary T . For Red∩
I , restricting to a

single T ∈ gs(S) globally does not work, but we can at least restrict ourselves to
a single T ∈ gs(S) per pre-instance. We need two simple lemmas:

Lemma 14. Let ι be an inference in FInf ≻,S , let ι′ be a pre-instance (C1θ, C0θ)
or (C2ρθ, C1θ, C0θ) of ι. Let T, T ′ ∈ gs(S) be two groundings of S that agree on
C1θ (or C2ρθ and C1θ, respectively). Then ι′ ∈ GT (ι) if and only if ι′ ∈ GT ′

(ι).

13

Proof. Since T and T ′ agree on C1θ (and C2ρθ), we know that ι′ ∈ GT (ι) if and
only if ι′ ∈ GInf ≻,T and analogously ι′ ∈ GT ′

(ι) if and only if ι′ ∈ GInf ≻,T ′
. The

side conditions of all ground inferences depend only on the ordering (which is the
same for GInf ≻,T and GInf ≻,T ′

) and the selected literals in the premise(s) C1θ
(and C2ρθ), which are the same by assumption. So ι′ is an inference in GInf ≻,T

if and only if it is an inference in GInf ≻,T ′
. ⊓⊔

Lemma 15. Let N ⊆ F , let ι be an inference in FInf ≻,S(N), let ι′ be a pre-
instance of ι. Let T, T ′ ∈ gs(S) be two groundings of S such that ι′ is contained in
both GT (ι) and GT ′

(ι). Then ι′ ∈ RedT
I (GT (N)) if and only if ι′ ∈ RedT ′

I (GT ′
(N)).

Proof. First, we observe that the definition of GT (N) does not depend on T , so
that GT (N) = GT ′

(N). So the set M of all clauses in GT (N) that are smaller
than the right (or only) premise of ι′ agrees with the set M ′ of all clauses in
GT ′

(N) that are smaller than the right (or only) premise of ι′. Consequently
ι′ ∈ RedT

I (GT (N)) if and only if M |= concl(ι′) if and only if M ′ |= concl(ι′) if
and only if ι′ ∈ RedT ′

I (GT ′
(N)). ⊓⊔

We can now show that Red∩
I is in fact equivalent to the classical definition

from [3] (in a slightly rephrased form):

Theorem 16. For any inference ι ∈ FInf ≻,S of the form (C1, C0) or (C2, C1, C0)
and for any pre-instance ι′ of ι of the form (C1θ, C0θ) or (C2ρθ, C1θ, C0θ) let
inherit(S, ι, ι′) be an arbitrary but fixed selection function T ∈ gs(S) such that
T (C1θ) = (S(C1))θ (and T (C2ρθ) = (S(C2))ρθ), if such a selection function
exists. Let inherit(S, ι, ι′) be undefined otherwise.

Then an inference ι = (C1, C0) ∈ FInf ≻,S is contained in Red∩
I (N) if and only

if every pre-instance ι′ is contained in RedT
I (GT (N)) whenever T = inherit(S, ι, ι′)

is defined and ι′ is a T -ground instance of ι.

Proof. Let ι ∈ FInf ≻,S be contained in Red∩
I (N) =

⋂
T ′∈gs(S) Red

GT ′

I (N). Then

ι ∈ RedGT ′

I (N) for every T ′ ∈ gs(S). Now assume that T = inherit(S, ι, ι′) is
defined and that ι′ is a T -ground instance of ι. Then T ∈ gs(S), so ι ∈ RedGT

I (N),
and hence ι′ ∈ GT (ι) ⊆ RedT

I (GT (N)).
Conversely assume that every pre-instance ι′ is contained in RedT

I (GT (N))
whenever T = inherit(S, ι, ι′) is defined and ι′ is a T -ground instance of ι. We

have to show that ι ∈ Red∩
I (N), which is equivalent to ι ∈ RedGT ′

I (N) for every
T ′ ∈ gs(S). Choose T ′ ∈ gs(S) arbitrarily. We now have to show that GT ′

(ι) ⊆
RedT ′

I (GT ′
(N)), which means by definition that every T ′-ground instance of ι is

contained in RedT ′

I (GT ′
(N)). Let ι′′ be a T ′-ground instance of ι, then T ′(C1θ) =

(S(C1))θ (and T ′(C2ρθ) = (S(C2))ρθ), so T = inherit(S, ι, ι′′) ∈ gs(S) is defined.
Since T (C1θ) = T ′(C1θ) = (S(C1))θ (and T (C2ρθ) = T ′(C2ρθ) = (S(C2))ρθ),
we know by Lemma 14 that ι′′ is a T -ground instance of ι. By assumption,
ι′′ ∈ RedT

I (GT (N)), so by Lemma 15, ι′′ ∈ RedT ′

I (GT ′
(N)) as required. ⊓⊔

14

The function inherit(S, ι, ι′) is undefined if the selections of the premises of
ι are contradictory for the pre-instance ι′. For instance, consider the clauses
C2 = (¬ f(a) ≈ b ∨ f(y) ≈ y) and C1 = (¬ f(x) ≈ b ∨ f(x) ≈ a), where S selects
the first literal in C1 and nothing in C2. Then there is a Negative Superposition
inference ι

¬ f(a) ≈ b ∨ f(y) ≈ y ¬ f(x) ≈ b ∨ f(x) ≈ a

¬ f(a) ≈ b ∨ f(x) ≈ a ∨ ¬x ≈ b

in which the maximal second literal of C2 and the selected first literal of C1 are
overlapped.

For the pre-instance ι′

¬ f(a) ≈ b ∨ f(a) ≈ a ¬ f(a) ≈ b ∨ f(a) ≈ a

¬ f(a) ≈ b ∨ f(a) ≈ a ∨ ¬ a ≈ b

of ι there is no selection function T such that T (C1θ) = (S(C1))θ and T (C2ρθ) =
(S(C2))ρθ, since C1θ = C2ρθ, but (S(C1))θ ̸= (S(C2))ρθ. (In fact, ι′ violates the
ordering restrictions of Negative Superposition, so it is not an inference for any
selection function.)

To see that restricting to a single T ∈ gs(S) globally does not work, consider
the clauses C2 = (¬ f(x) ≈ g(a, x′) ∨ f(f(x)) ≈ g(a, x′)) and C1 = (¬ f(y) ≈
g(y′, a) ∨ f(f(y)) ≈ g(y′, a)), where S selects the first literal in C1 and nothing
in C2 and the term ordering ≻ is an LPO with precedence f > g > a. There is a
Negative Superposition inference ι

¬ f(x) ≈ g(a, x′) ∨ f(f(x)) ≈ g(a, x′) ¬ f(y) ≈ g(y′, a) ∨ f(f(y)) ≈ g(y′, a)

¬ f(x) ≈ g(a, x′) ∨ ¬ g(a, x′) ≈ g(y′, a) ∨ f(f(f(x))) ≈ g(y′, a)

in which the maximal second literal of C2 and the selected first literal of C1 are
overlapped.

Now consider the pre-instances ι1

¬ f(a) ≈ g(a, a) ∨ f(f(a)) ≈ g(a, a)

¬ f(f(a)) ≈ g(a, a) ∨ f(f(f(a))) ≈ g(a, a)

¬ f(a) ≈ g(a, a) ∨ ¬ g(a, a) ≈ g(a, a) ∨ f(f(f(a))) ≈ g(a, a)

and ι2

¬ f(f(a)) ≈ g(a, a) ∨ f(f(f(a))) ≈ g(a, a)

¬ f(f(f(a))) ≈ g(a, a) ∨ f(f(f(f(a)))) ≈ g(a, a)

¬ f(f(a)) ≈ g(a, a) ∨ ¬ g(a, a) ≈ g(a, a) ∨ f(f(f(f(a)))) ≈ g(a, a)

of ι. The ground clause D = (¬ f(f(a)) ≈ g(a, a) ∨ f(f(f(a))) ≈ g(a, a)) occurs
in ι1 as a ground instance of C1 and in ι2 as a ground instance of C2. Since the
selection in the ground instances of C1 and C2 must correspond to the selection
in C1 and C2 themselves, this means that for ι1 the first literal in D must be
selected and for ι2 no literal in D must be selected. Consequently, the selection
functions for ι1 and ι2 must be different. (In fact, ιi is a Ti-instances of ι with
Ti = inherit(S, ι, ιi) for both i = 1, 2.)

15

References

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[2] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation
with simplification. In Mark E. Stickel, editor, CADE-10, volume 449 of LNCS,
pages 427–441. Springer, 1990.

[3] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. J. Log. Comput., 4(3):217–247, 1994.

[4] Jasmin Blanchette and Sophie Tourret. Extensions to the comprehensive framework
for saturation theorem proving. Archive of Formal Proofs, 2021, 2021.

[5] Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In
Natasha Sharygina and Helmut Veith, editors, CAV 2013, volume 8044 of LNCS,
pages 1–35. Springer, 2013.

[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[7] Stephan Schulz. E—a brainiac theorem prover. AI Commun., 15(2–3):111–126,
2002.

[8] Sophie Tourret. A comprehensive framework for saturation theorem proving. Archive
of Formal Proofs, 2020, 2020.

[9] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A
comprehensive framework for saturation theorem proving. J. Autom. Reason.,
66(4):499–539, 2022.

16

	A Modular Completeness Proof for the Superposition Calculus
	1 Background
	2 Preliminaries
	3 (Ground) Inference System
	4 Ground Refutational Completeness
	5 Lifting

