
Iterative Monomorphisation

Tanguy Bozec1,2(�) and Jasmin Blanchette2

1 ENS Paris-Saclay, Université Paris-Saclay, France
2 Ludwig-Maximilians-Universität München, Germany

Abstract. Monomorphisation can be used to extend monomorphic
provers to support polymorphic logics. We describe a pragmatic iterative
approach. We implemented it in the Zipperposition prover, where it is
used to translate away polymorphism before invoking the monomorphic
prover E as a backend. Our evaluation shows that this approach increases
Zipperposition’s success rate. Moreover, we find that iterative monomor-
phisation outperforms some native implementations of polymorphism.

Keywords: Polymorphism · monomorphism · automated reasoning

1 Introduction

Automatic theorem provers provide automation for proof assistant users. Many
proof assistants, such as HOL4 [16], HOL Light [9] and Isabelle/HOL [13], sup-
port rank 1 polymorphism, where type quantification is allowed at the top level
of formulae. By contrast, many automatic provers only work with monomorphic
logics. One way to close this gap is to extend automatic provers to natively sup-
port polymorphism, as has been done in Vampire [1]. However, this entails a lot
of work that must be redone for every prover. The alternative is to translate
polymorphic problems to monomorphic problems.

To achieve this, one approach [2] is to encode a complete polymorphic type
system, but this increases the size of the input problem substantially and slows
down provers [2]. Another approach to encode polymorphism is based on iterative
monomorphisation, as described by Böhme [5, Section 2.2.1]. Iterative monomor-
phisation heuristically instantiates the formulae’s type variables with concrete
types. However, any translation relying on a finite number of instantiations is in-
evitably incomplete. By a typed version of the compactness theorem, for any first
order polymorphic formula φ, there exists an equisatisfiable finite set of mono-
morphic instances of φ, but it cannot be computed in general [4, Theorem 1].

Böhme’s approach is implemented as part of Isabelle/HOL’s SMT (satisfiabil-
ity modulo theories) integration [5, Chapter 2]. This implementation is also used
by Sledgehammer [6,14] to interface with superposition based automatic theorem
provers. However, it is documented only superficially [5, Section 2.2.1]. An iter-
ative monomorphisation approach is also described in the context of SMT-LIB
[7]. Moreover, a similar algorithm appears to be implemented in the MESON
tactic [8] of HOL Light, but it is undocumented.

In this paper, we present an algorithm based on our understanding of Böhme’s
description and implementation (Section 3). We also provide a more detailed

http://orcid.org/0009-0005-9497-4168
http://orcid.org/0000-0002-8367-0936

2 T. Bozec and J. Blanchette

description to help future implementers. In addition, we present some optimisa-
tions to curb the combinatorial explosions (Section 4).

The algorithm works as follows. The input problem is a set of formulae. All
the problem’s symbols are collected, and the polymorphic symbol instances are
matched against the monomorphic ones. This yields new symbol instances, both
polymorphic and monomorphic. The process is then iterated, making use of the
newly generated instances. Consider the unary type constructor list. If a for-
mula contains list(α), where α is a type variable, the types list(int), list(list(int)),
etc., can be generated. However, because new types emerge through matching,
list(list(int)) can be obtained only once the list(int) instance has been generated.

To keep the number of generated formulae finite, we limit the number of
iterations. After the iterations are completed, the new monomorphic symbol
instances are used to instantiate the polymorphic symbols in the problem’s for-
mulae, generating new monomorphic formulae. Finally, because monomorphic
provers support only nullary type constructors, types must be ‘mangled’; for
example, the compound type list(int) might be mangled to list_int.

We implemented iterative monomorphisation in Zipperposition [18], a higher
order prover written in OCaml. Although Zipperposition is polymorphic, it uses
the monomorphic prover E [15] as a backend. Thanks to our work, E can now be
used with polymorphic problems. Moreover, our implementation can be used as a
preprocessor for other stand-alone provers. Our source code is available online.3
Our evaluation on the TPTP [17] tries to answer three questions (Section 6):

1. Is the new Zipperposition with the E backend more successful on polymor-
phic problems than Zipperposition without backend?

2. How competitive are monomorphic provers on monomorphised problems?
3. Is iterative monomorphisation more effective than the native polymorphism

implemented in polymorphic provers?

2 Preliminaries

Our algorithm works independently of the structure of the problem’s formulae.
It relies exclusively on the formulae’s monomorphic and polymorphic symbol
instances. Type variables are assumed to be implicitly universally quantified at
a formula’s top level. The precise form of formulae is left unspecified. Due to this
generality, iterative monomorphisation can be used with any standard variant of
rank 1 polymorphic logic. In particular, it can work with the polymorphic first
and higher order logics embodied by TPTP’s TF1 and TH1 syntaxes [3,11].

Our abstract framework relies on the following basic definitions.

Definition 1. A (polymorphic) type τ is a type variable (e.g. α) or the appli-
cation of an n-ary type constructor to n types (e.g. list(α), map(int, string)). If
n = 0, we omit the parentheses (e.g. int). A type is monomorphic if it contains
no type variables.
3 https://github.com/nartannt/iterative_monomorphisation

https://github.com/nartannt/iterative_monomorphisation

Iterative Monomorphisation 3

Definition 2. A (function or predicate) symbol f has a type arity that specifies
the number of type arguments it takes. A symbol instance is a symbol applied
to type arguments listed between angle brackets: f⟨τ1, . . . , τn⟩, where each τi is
a type. If n = 0, we omit the angle brackets (e.g. f).

Definition 3. A (type) substitution is a partial function mapping a finite num-
ber of type variables to corresponding types. Substitutions are written as σ =
{α1 7→ τ1, . . . , αn 7→ τn}. They are assumed to be lifted to formulae; thus, σ(φ)
yields the variant of φ in which each αi is replaced by τi. Given two substitutions
τ, υ, the successive application of τ and υ is denoted by υ ◦ τ .

Definition 4. Two substitutions {α1 7→ τ1, . . . , αm 7→ τm} and {β1 7→ υ1, . . . ,
βn 7→ υn} are said to be compatible if αi = βj implies τi = υj for all i, j.

Definition 5. Given two types τ, υ, matching υ against τ either fails or yields
a substitution σ such that σ(υ) = τ .

3 High level algorithm

The iterative monomorphisation algorithm takes a polymorphic problem as input
and returns a monomorphic problem. It applies a bounded number of iterations,
each taking a polymorphic problem as argument and returning a problem with
new partially instantiated formulae. Once the iterations are completed, a final
step discards all non-monomorphic formulae.

The initial phase of each iteration computes two maps, M and N , from the
input problem Φ.

– Given a symbol f occurring in Φ, the set M(f) consists of all monomorphic
type argument tuples to which f is applied in Φ. For example, if foldl⟨nat, int⟩
occurs in Φ, then (nat, int) ∈ M(foldl).

– Given a formula φ ∈ Φ and a symbol f occurring in φ, the set N(φ)(f)
consists of all type argument tuples to which f is applied in φ and which
contain a type variable. For example, if foldl⟨nat, list(α)⟩ occurs in φ, then
(nat, list(α)) ∈ N(φ)(foldl).

N is parametrised with φ because type variables are implicitly quantified
at the formula level. The formula indicates the scope of type variables. This is
not necessary for M since all the types it contains are monomorphic. To avoid
copying the monomorphic types for each formula, M and N are kept separate.

Once the maps M and N are initialised, each iteration performs the following
steps to create new instances of formulae:

1. Create an empty set of formulae Φ′.
2. For each formula φ ∈ Φ and for each symbol f occurring in φ:

2.1. For each (τ1, . . . , τn) ∈ M(f) and (υ1, . . . , υn) ∈ N(φ)(f) and for each i,
match υi against τi, yielding the substitution σi in case of success.

2.2. If all n matchings are successful and the substitutions σi are pairwise
compatible, add the formula (σ1 ◦ · · · ◦ σn)(φ) to Φ′.

4 T. Bozec and J. Blanchette

3. Return Φ ∪ Φ′.

The algorithm is trivially sound because the newly generated formulae are
instances of the initial problem’s formulae. However, it is not complete.

Example 6 Consider the following problem:

⟨1⟩ p⟨int⟩(0)
⟨2⟩ ∀a : α, as : list(α). p⟨α⟩(a) → p⟨list(α)⟩(as)
The first iteration matches α against int for p, generating the formula

⟨3⟩ ∀a : int, as : list(int). p⟨int⟩(a) → p⟨list(int)⟩(as)
The second iteration matches α against list(int), leading to the formula

⟨4⟩ ∀a : list(int), as : list(list(int)). p⟨list(int)⟩(a) → p⟨list(list(int))⟩(as)
Similarly the third iteration adds

⟨5⟩ ∀a : list(list(int)), as : list(list(list(int))).
p⟨list(list(int))⟩(a) → p⟨list(list(list(int)))⟩(as)

This example illustrates how an infinite number of new formulae can be
generated from a simple initial problem. Any reasonable implementation must
limit the number of new type arguments, substitutions and formulae.

4 Low level algorithm

The algorithm presented above is too naïve in practice. In this section, we present
a lower level algorithm with the following features. First, numeric bounds are in-
troduced to stop combinatorially explosive enumerations. Second, type argument
tuples are separated into an old set and a new set to avoid re-computing some
of the same matchings in successive iterations. Third, substitutions are directly
applied to the type arguments instead of the formulae. This avoids having to re-
extract the type arguments from the formulae at each iteration. New formulae
are generated only once all iterations are completed, in a separate, final step.

The data structures used in the algorithm are based on the ones used in the
high level description. Instead of a map M from symbols to monomorphic type
argument tuples, we now have Mold and Mnew, which play the same role whilst
also distinguishing between those type argument tuples that have already been
matched against and those that have not. Similarly, Nold and Nnew replace the
map N from formulae to symbols to non-monomorphic type argument tuples.
Finally, we maintain a map S from formulae to the substitutions generated by
the matchings. It is used to generate new formulae in the final phase.

All sets referenced in the algorithm are finite. Moreover, the algorithm relies
on primitives whose implementation depends on the specifics of the grammar
and logic used. Functions computing the following are assumed to be available:

– initialisation(Φ), where Φ is a set of (polymorphic) formulae, extracts the
initial type argument maps M and N from Φ.

Iterative Monomorphisation 5

Function iterative_monomorphisation(Φ)
Data: set Φ of polymorphic formulae
Result: set of monomorphic formulae

(Mold, Nold)← (∅, ∅)
(Mnew, Nnew)← initialisation(Φ)
S ← ∅
for i = 1 to num_loops do

(Mnext, Nnext)← (∅, ∅)
foreach φ ∈ Φ do

(M∆, N∆, S∆)←
formula_mono_step(φ,Mold,Mnew, Nold(φ), Nnew(φ))

S(φ)← S(φ) ∪ S∆

Mnext ←Mnext ∪M∆

Nnext(φ)← Nnext(φ) ∪N∆

(Mold,Mnew)← (Mold ∪Mnew,Mnext)
(Nold, Nnew)← (Nold ∪Nnew, Nnext)

return mangle(generate_mono_formulae(Φ, S))

Fig. 1: Algorithm for iterative monomorphisation

– type_vars(τ1, . . . , τn), where τ1, . . . , τn are types, gathers all the type vari-
ables from each type τ1, . . . , τn into a set. This function is overloaded to
accept a formula φ as input, in which case it returns the set of all type
variables which occur in the formula.

– match(υ, τ), where υ and τ are types, matches υ against τ and either fails or
returns Some(σ), where σ results from the matching. The algorithm matches
only non-monomorphic types against monomorphic types.

– domain(σ) returns the set of type variables α such that σ(α) ̸= α.
– compatible(σ1, σ2) tests the compatibility between σ1 and σ2.
– mangle(Φ), where Φ is a set of monomorphic formulae, returns the same set

of formulae where all types have been mangled.

The iterative monomorphisation algorithm is given in Figure 1. It has three
phases. The first phase applies a monomorphisation step to each formula in Φ
until the user-set limit, num_loops, is reached. This limit is the only bound
necessary for the algorithm to terminate. We use the colour blue to identify
bounds and code related to bounds. At the end of each of these iterations,
the old and new type argument maps are updated with newly generated types.
No new formulae are generated at this stage, only new type arguments and
substitutions. Once these iterations are completed, the first phase is complete
and the substitutions used to create new type argument tuples are passed to
generate_mono_formulae for the second phase. This is when the new formu-
lae are generated. The third phase mangles the composite types of the newly
monomorphised formulae. This allows targeting a simply typed logic with no
support for n-ary type constructors.

6 T. Bozec and J. Blanchette

Function formula_mono_step(φ,Mold,Mnew, Nold(φ), Nnew(φ))
Data: polymorphic formula φ

old and new monomorphic type argument maps Mold,Mnew

old and new non-monomorphic type argument maps Nold(φ), Nnew(φ)

Result: monomorphic type argument map
non-monomorphic type argument map
set of substitutions

max_mono_args←
min(max (mono_floor, |Mold ∪Mnew| ·mono_mult),mono_cap)

max_nonm_args←
min(max (nonm_floor, |Nold(φ)∪Nnew(φ)| · nonm_mult), nonm_cap)

S ← ∅
S′ ← matches(Mnew, Nnew(φ)) ∪matches(Mnew, Nold(φ)) ∪
matches(Mold, Nnew(φ))

(Mnext, Nnext(φ))← (∅, ∅)
foreach σ ∈ S′ do

foreach (f 7→ (υ1, . . . , υn)) ∈ Nold(φ) ∪Nnew(φ) do
if type_vars(υ1, . . . , υn) ⊆ subst_dom(σ) then

if |Mnext| < max_mono_args then
Mnext(f)←Mnext(f) ∪ {(σ(υ1), . . . , σ(υn))}
S ← S ∪ {σ}

else if |Nnext(φ)| ≥ max_nonm_args then
Mnext ←Mnext \ (Mold ∪Mnew)
Nnext(φ)← Nnext(φ) \ (Nold(φ) ∪Nnew(φ))
return (Mnext, Nnext(φ), S)

else
if |Nnext(φ)| < max_nonm_args then

Nnext(φ)(f)← Nnext(φ)(f) ∪ {(σ(υ1), . . . , σ(υn))}
S ← S ∪ {σ}

return (Mnext \ (Mold ∪Mnew), Nnext(φ) \ (Nold(φ) ∪Nnew(φ)), S)

Fig. 2: Algorithm for formula monomorphisation step

The formula monomorphisation algorithm is given in Figure 2. It forms the
core of the process. Essentially, it computes new type argument tuples for a single
formula. Type argument tuples are matched against each other to obtain a set of
substitutions which is iterated over in the outermost loop. The separation of type
argument tuples into old and new maps is used to ensure that only combinations
involving at least one new map are considered. This avoids re-computing some
matchings processed in previous iterations. New tuples are obtained by applying
each substitution to each non-monomorphic type argument tuple such that at
least one tuple component is instantiated by the substitution.

The total number of type argument tuples can increase cubically in the num-
ber of type argument tuples at each iteration and can therefore grow doubly
exponentially in the number of iterations. We give a sketch of how such growth
can occur for a single formula. If we assume that after k iterations, there are Nk

Iterative Monomorphisation 7

type argument tuples in total divided evenly between monomorphic and non-
monomorphic type argument tuples, then there can be up to

(
Nk

2

)2 successful
matches, yielding as many substitutions. Each substitution is then applied to
each non-monomorphic type argument for a total of

(
Nk

2

)3 possible new type
argument tuples. If half of these new type argument tuples are monomorphic
and the other half are non-monomorphic, then the next iteration will begin with
Nk+1 = N3

k · 2−3 evenly split type argument tuples. Therefore, the total number

of type argument tuples on the kth iteration can reach Nk = N3k

0 · 2−3k+2+3
2 .

Depending on the shape and size of the input problem and the number of
iterations performed, the doubly exponential growth may be problematic. In-
troducing bounds addresses this potential issue. The limit on the number of
newly generated monomorphic type argument tuples is min(max(mono_mult ·
m,mono_floor),mono_cap), where m is the total number of monomorphic type
argument tuples. The components of this limit are

1. mono_cap, a limit on the total number of new type argument tuples;
2. mono_mult, which is used to allow the total number of (monomorphic) type

argument tuples to grow by a certain proportion of the current number m
of monomorphic type argument tuples;

3. mono_floor, which balances out mono_mult, preventing mono_mult from
inhibiting new type argument tuple generation if m is too low.

Similar bounds are used for the non-monomorphic type argument tuples:
The limit on the number of new non-monomorphic type argument tuples is
min(max(nonm_mult · n, nonm_floor),nonm_cap), where n is the number of
non-monomorphic type argument tuples associated with the current formula.
An important difference with the monomorphic case is that n depends on the
current formula being processed whilst m does not. Both in the monomorphic
and in the non-monomorphic case, the maximum number of newly generated
type argument tuples is fixed per formula and per iteration.

The matches function, which computes the substitutions used for generat-
ing new type arguments, is given in Figure 3. Each symbol instance from N(φ)
is matched against all corresponding symbol instances from M . For two such
symbol instances, the types from the non-monomorphic type argument tuple
are matched component-wise against the types from the monomorphic type ar-
gument tuple. The resulting substitutions are composed if they are compatible.
In the algorithm, compatibility is checked by making sure the foreach loop has
successfully iterated over all elements of the type argument tuple. If any substitu-
tions are incompatible, the matchings are discarded. Since the composition of two
compatible substitutions is commutative, the order of composition is irrelevant.
The total number of substitutions generated is limited by substitution_cap.

The various bounds presented here overlap to some extent. For instance, hav-
ing at most substitution_cap substitutions generated by matches may be suffi-
cient to curb the number of new type argument tuples, making the mono_cap,
mono_mult, mono_floor triplet superfluous. Nonetheless every bound has uses.
For example, problems that lead to few successful matches but many type ar-

8 T. Bozec and J. Blanchette

Function matches(M,N(φ))
Data: monomorphic type argument map M

non-monomorphic type argument map N(φ)
Result: set of substitutions

S ← ∅
foreach f 7→ (υ1, . . . , υn) ∈ N(φ) do

foreach (τ1, . . . , τn) ∈M(f) do
if |S| > substitution_cap then

return S
if for all 0 ≤ i ≤ n, match(υi, τi) = Some(σi) then

if σ1, . . . , σn are compatible then
σ ← σ1 ◦ · · · ◦ σn

S ← S ∪ {σ}

return S

Fig. 3: Algorithm for match generation

Function generate_mono_formulae(Φ, S)
Data: set Φ of polymorphic formulae

substitution map S
Result: set of monomorphic formulae

Ψ ← ∅
foreach φ ∈ Φ s.t. φ is non-monomorphic do

foreach σ ∈ mono_substs(S(φ), type_vars(φ), ∅, {}) do
if |Ψ | < max_new_formulae then

Ψ ← Ψ ∪ {σ(φ)}
else

return Ψ
return Ψ

Fig. 4: Algorithm for monomorphic formula generation

gument tuples may benefit from a limit on the number of new type argument
tuples whilst problems for which substitution generation is more combinatorially
explosive may benefit from a limit on the number of generated substitutions.

Once all monomorphisation iterations have been completed, we are left with a
set of the substitutions that have been used to generate new type arguments. The
last phase uses this set to instantiate the type variables in the input problem’s
non-monomorphic formulae. In the presence of bounds, the order in which the
elements of S are traversed affects the formulae resulting from the last phase.

The generate_mono_formulae function is given in Figure 4. It generates
monomorphising substitutions and applies them to the polymorphic formulae of
the input problem that they instantiate. A substitution σ is monomorphising
for a formula φ if σ(φ) is monomorphic. Since the substitutions are monomor-
phising relative to the formula they are applied to, the resulting formulae will

Iterative Monomorphisation 9

Function mono_substs(S, V, Sres, σ)
Data: set S of substitutions

set V of type variables
set Sres of substitutions
substitution σ

Result: set of substitutions

if V = ∅ then
return Sres ∪ {σ}

else
let α s.t. α ∈ V
foreach σ∆ ∈ S s.t. α ∈ domain(σ∆) and compatible(σ, σ∆)
do

if |Sres| < max_substs then
Sres ←
mono_substs(S, V \ domain(σ∆), Sres, σ∆ ◦ σ)

else
return Sres

return Sres

Fig. 5: Algorithm for monomorphising substitution generation

be monomorphic. The max_new_formulae bound is used to control the total
number of new formulae. It overlaps with max_substs but can be useful to set
an absolute limit on the size of the final problem.

To monomorphise a polymorphic formula, we first compute its monomor-
phising substitutions using the mono_substs function given in Figure 5. Such
substitutions are computed using a recursive function. Given a set V of type
variables and a set S(φ) of substitutions, it selects a substitution σ∆ from S(φ)
that instantiates at least one of the type variables in V . It is important that σ∆
be compatible with σ so that they can be composed and the function recursively
called to instantiate the remaining type variables.

The Zipperposition implementation of the mono_substs function uses a map
from type variables to substitutions instead of a set to filter the relevant substi-
tutions from S efficiently. The max_substs bound exists for two main reasons:

1. The iterative monomorphisation algorithm can generate up to max_substs
new monomorphic formulae per initial polymorphic formula. Generating an
excessive number of new formulae can overwhelm the prover. The final num-
ber of output formulae is limited to at most |Φ| · max_substs.

2. The mono_substs function is the algorithm’s most combinatorially explosive
part. For a formula φ, if S(φ) contains n substitutions that each instantiate
exactly one of v type variables, up to nv monomorphising substitutions may
be generated. Recall that the total number of type argument tuples used to
generate S(φ) can be doubly exponential in the number of loop iterations.
The starting n may therefore already be very large.

10 T. Bozec and J. Blanchette

5 Detailed example

To illustrate the low level version of the iterative algorithm, we consider the
following (admittedly contrived) initial problem:

⟨1⟩ p⟨int, nat⟩(−1, 3) ∧ p⟨int, int⟩(−1,−2)

⟨2⟩ ∀x : α, y : list(α), z : β. p⟨list(α), α⟩(y, x) ∧ p⟨α, α⟩(x, x) ∧ p⟨α, β⟩(x, z)

Mnew is initialised with {p 7→ {(int, nat), (int, int)} and Nnew with {⟨2⟩ 7→ {p 7→
{(list(α), α), (α, α), (α, β)}}}. Then we enter the main loop (assuming num_loops
is at least 1). We iterate over each formula and call formula_mono_step for each
of them. Nothing happens for formula ⟨1⟩ because it contains no type variables.
For formula ⟨2⟩, Mnew and Nnew(⟨2⟩) are passed as arguments to matches.

The three non-monomorphic type argument tuples are matched against their
monomorphic counterparts in Mnew:

– (list(α), α) fails in both cases because list(α) fails to match against int.
– (α, α) fails to match against (int, nat) because the substitutions resulting

from the match of the first and second element of the tuple are incompatible.
The second match is successful and yields the substitution σ1 = {α 7→ int}

– (α, β) succeeds in both cases and generates the substitutions σ2 = {α 7→
int, β 7→ int} and σ3 = {α 7→ int, β 7→ nat}.

Then matches returns, and the substitutions are used to generate new type
argument tuples. Each substitution is applied to the type arguments of the func-
tion symbols of formula ⟨2⟩ because they are the only function symbols with
non-monomorphic type arguments. The table below summarises the situation:

σ1 σ2 σ3

(list(α), α) (list(int), int) (list(int), int) (list(int), int)
(α, α) (int, int) (int, int) (int, int)
(α, β) (int, β) (int, int) (int, nat)

With a simple two-formula initial problem, there are already up to nine new type
arguments tuples generated at this step in the first iteration alone, although only
four are unique. Once the new type argument tuples are added to their respective
maps, a new iteration is begun. We only consider one iteration and continue to
the next phase of the algorithm.

The next function to be called is generate_formulae. It iterates over all non-
monomorphic formulae of the initial problem; in our case, this will only be ⟨2⟩.
The set of type variable tuples of ⟨2⟩ is passed to mono_substs along with the
set of all previously generated substitutions.

First, we instantiate α, the first type variable of ⟨2⟩. If σ1 is selected to
instantiate α, both σ2 and σ3 will in turn be selected to instantiate β. This will
generate two monomorphising substitutions, σ1 ◦ σ2 = σ2 and σ1 ◦ σ3 = σ3,
which are added to the set of monomorphising substitutions Sres. Now σ2 is
selected. It simultaneously instantiates α and β. Here, σ2 is already in Sres and

Iterative Monomorphisation 11

is therefore ignored, and σ3 is treated similarly. No more than substitution_cap
monomorphising substitutions can be generated in this way.

Now, the monomorphising substitutions have been generated. We only need
to apply them to the formula they monomorphise. This is repeated for all non-
monomorphic formulae or until max_new_formulae is reached. The order of
formulae will impact the output problem in the latter case. For some larger input
problems, mono_substs could be sufficiently explosive to only allow a handful
of different formulae to be monomorphised. The ability to set substitution_cap
independently can help avoid this issue.

Finally, if the target language supports only nullary type construtors, the
types of all monomorphic formulae, both new and old, are mangled. Assuming
that mangling is not necessary, the algorithm outputs

⟨1⟩ p⟨int, nat⟩(−1, 3) ∧ p⟨int, int⟩(−1,−2)
⟨3⟩ ∀x : int, y : list(int), z : int. p⟨list(int), int⟩(y, x) ∧ p⟨int, int⟩(x, x) ∧

p⟨int, int⟩(x, z)
⟨4⟩ ∀x : int, y : list(int), z : nat. p⟨list(int), int⟩(y, x) ∧ p⟨int, int⟩(x, x) ∧

p⟨int, nat⟩(x, z)
In this example, two new monomorphic formulae are generated.

6 Evaluation

The monomorphisation algorithm is parametrised by many bounds. The first
part of the evaluation process seeks appropriate values for these bounds. The
second part compares the performance of Zipperposition without E and with
the new monormorphising E backend on polymorphic problems. The third part
compares the performance of different provers on polymorphic problems and
their monomorphised counterparts.

The benchmarks are taken from version 8.2.0 of the TPTP library [17]. The
library contains 1765 problems in TF1 and TH1, corresponding respectively to
first and higher order logic with rank 1 polymorphism. Because Zipperposition
does not support reasoning with real numbers, we removed all problems that
include them. In total, our benchmark suite contains 1534 polymorphic problems.
We chose as a measure of success for a given prover (or prover configuration)
the number of problems that could be solved by the prover in at most 30 s per
problem with a single thread. Our raw evaluation data is available online.4

Parameter optimisation. Each bound of the monomorphisation process rep-
resents a tradeoff: a higher bound allows for a more exhaustive instantiation of
type variables but takes more time. Since we cannot test all possible combina-
tions of values for all bounds to find the best compromise between completeness
and speed, we group closely related bounds together and test combinations of
values for the bounds in these groups. Once we find the best performing set of
values for a group, we assign these values to the corresponding bounds as we
4 https://zenodo.org/records/14881532

https://zenodo.org/records/14881532

12 T. Bozec and J. Blanchette

begin the search for the next group. If several groups result in the same number
of proved problems, we select the most constraining values. Winning entries are
shown in bold in Tables 1 to 6.

To guard against overfitting took place, we carried out the part of the evalu-
ation related to parameter optimisation and all preliminary evaluations on 500
randomly chosen problems out of the 1534 selected problems. We carried out
the rest of the evaluations on the remaining 1034 problems.

Before finding values to assign to the bounds of the monomorphisation algo-
rithm, we must choose which base options to run Zipperposition with. Because
the space of possible base configurations is too large to evaluate exhaustively, we
evaluated, in a preliminary experiment, all pre-existing portfolio configurations
that called E against our benchmark suite of 500 problems. Since E could not
treat these non-monomorphic problems, it was disabled. The preliminary eval-
uation found that the 40_b.comb configuration performed best by proving 131
problems. This configuration became the base configuration, which we used as
a basis to evaluate the monomorphisation options.

We conducted additional informal evaluations on the 500 problems to find
appropriate default values and test ranges for the monomorphisation bounds.
We started the option evaluation process with the base configuration and the
following default values for monomorphisation bounds and parameters for E:

– nonm_cap: ∞
– nonm_mult: 1
– nonm_floor: 50
– substitution order: separation
– substitution_cap: ∞
– max_substs: 10

– max_new_formulae: 2000
– new formulae limit multiplier: 0
– monomorphisation timeout: 20
– num_loops: 4
– E timeout: 30
– E call point: 0

The initial values for the mono_cap, mono_mult and mono_floor options are
irrelevant because the options’ values are set when computing Table 1.

Table 1 groups bounds that control the maximum number of newly generated
monomorphic type arguments per formula and per iteration. The limit on newly
generated type arguments is determined by three components that form a natural
group of bounds.

The table shows that generating no new monomorphic type arguments seems
to be the best approach. This result may seem counterintuitive, but it is possi-
ble to monomorphise formulae without generating monomorphic type arguments.
This is because non-monomorphic type argument generation can produce substi-
tutions that instantiate one or more type variables, and it is these substitutions
that are used to monomorphise formulae.

Table 2 is similar to Table 1 except that it evaluates the bounds limiting the
number of new non-monomorphic type arguments. The bound values are lower
because we found non-monomorphic type arguments to be combinatorially explo-
sive in preliminary evaluations. The table confirms that non-monomorphic type
argument generation drives the creation of useful non-monomorphic formulae.
This is indicated by the very low number of problems solved when no new non-

Iterative Monomorphisation 13

Table 1: Evaluation of bounds for monomorphic type argument generation

cap
500 1000 ∞

floor
mult 0 50 100 200 0 50 100 200 0 50 100 200

0 178 161 161 156 178 160 160 156 178 161 160 156
1 155 155 155 158 153 154 154 156 154 154 155 155
2 154 154 153 154 153 153 154 152 154 153 154 154
∞ 153 154 153 155 155 153 154 156 159 160 161 161

Table 2: Evaluation of bounds for non-monomorphic type argument generation

cap
500 1000 ∞

floor
mult 0 10 50 100 0 10 50 100 0 10 50 100

0 125 184 182 177 125 184 182 177 125 184 182 177
0.5 176 184 182 177 176 184 182 177 176 184 182 177
1 182 181 178 177 182 181 178 177 182 181 178 177
∞ 173 174 174 174 174 174 173 173 125 125 125 125

monomorphic type arguments are allowed. Performance of the monomorphisa-
tion algorithm seems to plateau for some ranges of values and drops off beyond.

The substitution generation phase occurs once all type arguments have been
generated. The bound limiting the number of monomorphising substitutions per
formula is directly related to the order which dictates how such monomorphising
substitutions are generated. The heuristic greatly affects monomorphising substi-
tution generation. The ‘age’ order of substitution orders substitutions generated
in earlier iterations first. The ‘random’ order randomly shuffles substitutions.
Finally, the ‘separation’ order separates the substitutions into groups of substi-
tutions generated in the same iteration and generates monomorphising substi-
tutions from each of these groups independently. Table 3 shows that the values
of bounds limiting the number of monomorphising substitutions seem to affect
performance only when the ‘separation’ heuristic is used.

Table 4 groups the bounds related to the size of the output problem to be
passed to the E prover. The absolute limit is the maximum number of formulae
passed to E. The multiplier limits the total number of newly generated formulae
based on the problem’s initial number of formulae. We find that the E prover
tends to perform better when given a limited number of formulae.

For larger problems, the monomorphisation algorithm may time out despite
the bounds. In these cases, neither Zipperposition nor E will have had a chance
to try to solve the problem. To avoid this, a timer can interrupt the mono-

14 T. Bozec and J. Blanchette

Table 3: Evaluation of bounds for substitution generation

substitution order
mono subst age random separation

2 161 178 175
5 161 178 180
7 161 178 182
10 161 178 184

Table 4: Evaluation of bounds directly related to the size of the output problem

formula multiplier
formula cap 1 2 3 ∞

500 184 184 184 183
2000 184 184 184 184
∞ 168 178 183 125

Table 5: Evaluation of parameters related to the depth of monomorphisation

mono time
num. loops 5 10 20 30

1 183 184 183 183
2 186 186 186 185
3 186 186 186 185
4 186 186 186 185
5 185 185 185 184

morphisation algorithm, after which Zipperposition resumes normal operation.
Table 5 tests the amount of time that is allocated to monomorphisation against
the number of iterations of the monomorphisation algorithm. Neither parameter
seems to substantially affect the algorithm’s performance.

Table 6 shows the impact of the options with which we call the E prover.
The point at which Zipperposition interrupts its normal operation and begins
the monomorphisation process is determined by the ‘E call point’ parameter.
It is expressed as a fraction of the total time allotted to Zipperposition. The E
timeout (in seconds) limits how long E is run before being interrupted, at which
point Zipperposition resumes normal operation. The longer Zipperposition runs
before E is invoked, the more formulae are generated, and the more combina-
torially explosive iterative monomorphisation is. This likely explains the poor
performance for greater values of the E call point.

E as a Zipperposition backend. We compare the performance of two in-
stances of Zipperposition. By default, Zipperposition may call E as a backend

Iterative Monomorphisation 15

Table 6: Evaluation of parameters related to the E prover

E call point
E timeout 0 0.1 0.2 0.3

2 180 143 132 124
5 185 142 134 125
10 184 143 132 125
20 184 137 133 125
30 182 133 134 125

Table 7: Evaluation of Zipperposition without E vs. with E

without E with E union

500 problem suite 160 198 207
1034 problem suite 337 410 434

Table 8: Evaluation of native polymorphism vs. monomorphisation

Native Mono Union

E – 340 340
Leo-III with E 157 231 274
Zipperposition 339 351 404

when given a monomorphic problem [18]. The first instance is run in the port-
folio mode portfolio.sequential.py, which attempts to prove the problem
with various configurations tried in succession. Since all given problems are non-
monomorphic, these configurations can never invoke E as a backend, this in-
stance is therefore labeled ‘without E’. The second instance is a modification of
the portfolio.sequential.py file where each configuration is modified analo-
gously to 40_b.comb with the options obtained in the previous evaluation phase.
This instance can successfully call E as a backend because it is able to provide
E with a monomorphised problem. Each of the two instances is evaluated on
the set of the 500 previously used problems, and the set of the remaining 1034
problems is evaluated separately. The proportion of problems successfully solved
on the 500 and 1034 problem suites are similar, suggesting that no overfitting
took place during the option optimisation phase.

Table 7 shows that the use of E as a backend markedly improves the per-
formance of Zipperposition. It is not a strict improvement, since some problems
are solved without E and not with E.

16 T. Bozec and J. Blanchette

Monomorphisation as a preprocessor. To evaluate the usefulness of itera-
tive monomorphisation as an alternative to native polymorphism, two competi-
tive higher order polymorphic provers were run on the 1034 problem suite. We
chose Leo-III and Zipperposition. Unfortunately we needed to exclude Vampire
because of parsing issues. The fix for these issues was unavailable for Vampire’s
higher order branch at the time of the evaluation.

Table 8 shows the results. The monomorphisation approach is evaluated in
two steps. First, each problem is monomorphised using the options obtained
from the first evaluation phase except for the monomorphisation timeout op-
tion, which is increased to 30 s. For 149 problems, monomorphisation times out.
Second, each prover is run on the remaining monomorphised problems, and the
results are tallied in the ‘Mono’ column. In addition to the polymorphic provers
used in the ‘Native’ tests, the monomorphic prover E is run on the monomor-
phised problems to provide an additional point of comparison. Instead of running
each prover for 30 s on the monomorphised problems, the monomorphisation
time (rounded up to the nearest second) is subtracted to compare fairly against
the ‘Native’ column, which does not have a similar preprocessing phase.

Despite the monomorphisation timeouts, monomorphisation is more effective
than Leo-III’s and Zipperposition’s native polymorphism on the benchmarks.

7 Conclusion

We described a translation algorithm that iteratively instantiates polymorphic
types to produce monomorphic problems. Our primary motivation was to im-
prove the success rate of Zipperposition and its monomorphic E backend, and
indeed our evaluation shows a clear improvement. We also saw that even with
automatic provers that support polymorphism, iterative monomorphisation is a
better alternative in practice.

We see the following avenues for future work. First, iterative monomorphisa-
tion blindly enumerates candidate instantiations, without exploiting any knowl-
edge about the logical structure of the formulae in which symbols occur. For ex-
ample, a lemma p⟨α⟩ cannot be used to prove the conjecture ¬p⟨nat⟩ because of
the incompatible polarities, but our algorithm instantiates α with nat regardless.
Second, some automatic provers as well as tools such as Sledgehammer include
relevance filters that heuristically select a subset of the available axioms; filters
such as MePo [12] and SInE [10] are iterative and could be interleaved with
monomorphisation. Third, although one would expect native implementations
of polymorphism to outperform any preprocessor, currently this is not the case,
suggesting that there is considerable room for improvement on the native front.

Acknowledgements. We thank Sascha Böhme for fruitful discussions. We thank Jan-
nis Limperg, Mark Summerfield, and the peer reviewers for suggesting textual improve-
ments. This research is co-funded by the European Union (ERC, Nekoka, 101083038).
Views and opinions expressed are however those of the authors only and do not neces-
sarily reflect those of the European Union or the European Research Council. Neither
the European Union nor the granting authority can be held responsible for them.

Iterative Monomorphisation 17

References

1. Bhayat, A., Reger, G.: A polymorphic Vampire (short paper). In: Peltier, N.,
Sofronie-Stokkermans, V. (eds.) IJCAR 2020, Part II. LNCS, vol. 12167, pp. 361–
368. Springer (2020)

2. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic
and polymorphic types. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 493–507. Springer (2013)

3. Blanchette, J.C., Paskevich, A.: TFF1: The TPTP typed first-order form with
rank-1 polymorphism. In: Bonacina, M.P. (ed.) CADE-24. LNCS, vol. 7898, pp.
414–420. Springer (2013)

4. Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language.
In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp.
87–102. Springer (2011)

5. Böhme, S.: Proving Theorems of Higher-Order Logic with SMT Solvers. PhD the-
sis, Technische Universität München (2012)

6. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS, vol. 6173, pp. 107–121. Springer (2010)

7. Bonichon, R., Déharbe, D., Tavares, C.: Extending SMT-LIB v2 with λ-terms
and polymorphism. In: Rümmer, P., Wintersteiger, C.M. (eds.) SMT 2014. CEUR
Workshop Proceedings, vol. 1163, pp. 53–62. CEUR-WS.org (2014)

8. Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A.,
Slaney, J.K. (eds.) CADE-13. LNCS, vol. 1104, pp. 313–327. Springer (1996)

9. Harrison, J.: HOL Light: An overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer (2009)

10. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner,
N.S., Sofronie-Stokkermans, V. (eds.) CADE-23. LNCS, vol. 6803, pp. 299–314.
Springer (2011)

11. Kaliszyk, C., Sutcliffe, G., Rabe, F.: TH1: The TPTP typed higher-order form
with rank-1 polymorphism. In: Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR
2016. CEUR Workshop Proceedings, vol. 1635, pp. 41–55. CEUR-WS.org (2016)

12. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Log. 7(1), 41–57 (2009)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

14. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer,
a practical link between automatic and interactive theorem provers. In: Sutcliffe,
G., Schulz, S., Ternovska, E. (eds.) IWIL-2010. EPiC, vol. 2, pp. 1–11. EasyChair
(2012)

15. Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
16. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz,

C.A., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer (2008)
17. Sutcliffe, G.: The TPTP problem library and associated infrastructure – from CNF

to TH0, TPTP v8.2.0. J. Autom. Reason. 59(4), 483–502 (2017)
18. Vukmirović, P., Bentkamp, A., Blanchette, J., Cruanes, S., Nummelin, V., Tourret,

S.: Making higher-order superposition work. In: Platzer, A., Sutcliffe, G. (eds.)
CADE-28. LNCS, vol. 12699, pp. 415–432. Springer (2021)

	Iterative Monomorphisation

