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Abstract. The λ-superposition calculus is a successful approach to proving higher-order
formulas. However, some parts of the calculus are extremely explosive, notably due to the
higher-order unifier enumeration and the functional extensionality axiom. In the present
work, we introduce an “optimistic” version of λ-superposition that addresses these two
issues. Specifically, our new calculus delays explosive unification problems using constraints
stored along with the clauses, and it applies functional extensionality in a more targeted
way. The calculus is sound and refutationally complete with respect to a Henkin semantics.
We have yet to implement it in a prover, but examples suggest that it will outperform, or
at least usefully complement, the original λ-superposition calculus.

1. Introduction

The (Boolean) λ-superposition calculus [6], which generalizes Bachmair and Ganzinger’s
superposition calculus [1], has shown itself to be a powerful automated reasoning method
for classical higher-order logic with function and Boolean extensionality. The calculus is
sound and refutationally complete with respect to a Henkin semantics. It is implemented
in the Zipperposition prover [30], and a refutationally incomplete, pragmatic version of it
drives the E prover’s higher-order mode [32].

These implementations of λ-superposition achieve remarkable empirical results, but to
do so, they must deprioritize or—in incomplete variants—disable specific features of the
calculus that would otherwise cause combinatorial explosion. Among these features, the
most problematic are the following:

– the hugely expensive computation of unifiers of flex–flex pairs, which the calculus requires
instead of allowing Huet’s preunification procedure;

– the functional extensionality axiom and its orientation according to the term order, which
enforces a lot of wasteful extensionality reasoning unrelated to the actual proof goal; and

– the so-called fluid superposition rule, which simulates rewriting below applied variables
and which causes lots of inferences that rarely lead to a successful proof.
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In this article, we introduce the optimistic λ-superposition calculus (Section 3), which
addresses the first two issues:

– For unification, our new calculus delays explosive unification problems using constraints
stored along with the clauses.

– For functional extensionality, it introduces a targeted inference rule that works in tandem
with tailored term orders, described in a companion article [4]. The new rule works by
first assuming that two functions are equal and delays the proof that they are equal on all
arguments until the assumption is found to be useful.

Both of these new features delay some work and can be considered “optimistic,” hence the
calculus’s name.

As a pleasant side effect of the new functional extensionality rule, we can strengthen
the redundancy criterion used to simplify clauses. Some inference rules of the original
λ-superposition calculus are now simplification rules in our new calculus.

Example 1.1. As an illustration of the stronger redundancy criterion, consider a derivation
starting from the following clauses:

(1) (λx. x+ 1) ̸≈ (λx. 1 + x)

(2) y + z ≈ z + y

A negative extensionality inference from (1) yields the clause

(3) diff(λx. x+ 1, λx. 1 + x) + 1 ̸≈ 1 + diff(λx. x+ 1, λx. 1 + x)

which eventually leads to a derivation of the empty clause using (2). The original λ-
superposition calculus required us to keep clause (1) and perform further inferences with it,
whereas our new calculus can immediately discard (1) when generating (3).

We prove our calculus sound (Section 4) and refutationally complete (Section 5). The
completeness proof is structured as six levels, starting from superposition for a ground first-
order logic and culminating with nonground higher-order logic with functional extensionality.
The parts of the proof concerned with the constraints attached to clauses and with the
new functional extensionality rule are inspired by basic superposition [3, 23]. The two new
features make the proof rather complicated, but the calculus is simpler than the original
λ-superposition calculus in many respects:

– The intricate notions of “deep occurrences” and “fluid terms” play no role in our calculus.
– We removed the support for inner clausification, which does not perform well in practice

and complicates the original λ-superposition calculus. As an additional benefit, this enables
us to select literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (a claim made for the original λ-superposition
calculus as well [6] but corrected later [5, 25]).

– Our calculus does not require the presence of Hilbert’s choice axiom.

In principle, these simplifications could be applied to the original λ-superposition calculus
as well without adding unification constraints or the new functional extensionality rule.

Our calculus’s two main features are inspired by Vampire’s higher-order mode [11],
which is currently the best performing higher-order prover in CASC [28, 29]. Like our
calculus, Vampire delays unification problems and functional extensionality proofs. The
mechanisms are slightly different, however, because Vampire stores delayed unification
problems in negative literals instead of constraints, allowing inference rules to be applied to
them, and it uses unification with abstraction for functional extensionality (which is also
implemented in E [32, p. 13]) instead of an inference rule. The similarities to performant
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provers, along with example problems we have studied, suggest that our calculus not only is
refutationally complete but will also perform well empirically. For further related work, we
refer to Bentkamp et al. [6].

2. Logic

Our formalism is higher-order logic with functional and Boolean extensionality, rank-1
polymorphism, but without choice and the axiom of infinity. The logic closely resembles
Gordon and Melham’s HOL [18], the TPTP TH1 standard [20], and the logic underlying
λ-superposition by Bentkamp et al. [6].

Departing from Bentkamp et al., in the present work, quantifiers are not supported and
must always be encoded as (λx. t) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) and (λx. t) ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥). This is necessary because
quantifiers would prevent us from constructing a suitable term order for the extensionality
behavior that we want to achieve. Moreover, we do not include the axiom of choice.

To make the positive literal of the extensionality axiom maximal, we introduce a special
type of argument to constants into our syntax, the parameters. A constant that takes
parameters cannot occur without them; partial application is not allowed for parameters.
Moreover, parameters cannot contain variables bound by λ-abstractions.

As our semantics, we use Henkin semantics. True statements in these semantics
correspond exactly to provable statements in the HOL systems. Since Henkin semantics
is not subject to Gödel’s first incompleteness theorem, it allows us to prove refutational
completeness.

2.1. Syntax. We use the notation ān or ā to denote a tuple (a1, . . . , an). If f is a unary
function, we write f(ān) for the elementwise application (f(a1), . . . , f(an)).

2.1.1. Types. To define our logic’s types, we fix an infinite set Vty of type variables. A
set Σty of type constructors, each associated with an arity, is a type signature if it contains
at least one nullary type constructor o of Booleans and a binary type constructor → of
functions. A type is either a type variable α ∈ Vty or an applied type constructor κ(τ̄n) for
some n-ary κ ∈ Σty and types τ̄n. To indicate that an expression e has type τ , we write e : τ .

2.1.2. Lambda-Preterms and Lambda-Terms. To define our logic’s terms, for a given type
signature Σty, we fix a set V of variables with associated types. We write x⟨τ⟩ for a variable
named x with associated type τ . We require that V contains infinitely many variables of
any type.

A term signature Σ is a set of constants. Each constant is associated with a type
declaration of the form Πᾱm. τ̄n ⇒ υ, where τ̄n and υ are types and ᾱm is a tuple of
distinct variables that contains all type variables from τ̄n and υ. The types τ̄n are the
types of the parameters of the constant, and υ may be a function type if the constant takes
nonparameter arguments. We require that Σ contains the logical symbols ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o;
∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→ : o → o → o; and ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ : Πα. α → α → o. A type signature and a term signature
form a signature.

Our syntax makes use of a locally nameless notation [13] using De Bruijn indices [14].
We distinguish between λ-preterms, λ-terms, preterms, and terms. Roughly, λ-preterms are
raw syntactic expressions, λ-terms are the subset of locally closed λ-preterms, preterms are
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βη-equivalence classes of λ-preterms, and terms are βη-equivalence classes of λ-terms. More
precisely, we define these notions as follows.

The set of λ-preterms is built from the following expressions:

– a variable x⟨τ⟩ : τ for x⟨τ⟩ ∈ V;
– a symbol f⟨ῡm⟩(ūn) : τ for a constant f ∈ Σ with type declaration Πᾱm. τ̄n ⇒ τ , types ῡm,

and λ-preterms ū : τ̄n such that all De Bruijn indices in ū are bound;
– a De Bruijn index n⟨τ⟩ : τ for a natural number n ≥ 0 and a type τ , where τ represents

the type of the bound variable;
– a λ-expression λ⟨τ⟩ t : τ → υ for a type τ and a λ-preterm t : υ such that all De Bruijn

indices bound by the new λ⟨τ⟩ have type τ ;
– an application s t : υ for λ-preterms s : τ → υ and t : τ .

The type arguments ⟨τ̄⟩ carry enough information to enable typing of any λ-preterm without
any context. We often leave them implicit, when they are irrelevant or can be inferred. In
f⟨ῡm⟩(ūn) : τ , we call ūn the parameters. We omit () when a symbol has no parameters.
Notice that it is possible for a term to contain multiple occurrences of the same free De
Bruijn index with different types. In contrast, the types of bound De Bruijn indices always
match.

The set of λ-terms is the subset λ-preterms without free De Bruijn indices, i.e, the subset
of locally closed λ-preterms. We write T λ(Σ,V) for the set of all λ-terms and T λpre(Σ,V)
for the set of all λ-preterms, sometimes omitting the set V when it is clear from the context.

A λ-preterm is called functional if its type is of the form τ → υ for some types τ and υ.
It is called nonfunctional otherwise.

Given a λ-preterm t and λ-terms s0, . . . , sn, we write t{0 7→ s0, . . . , n 7→ sn} for the
λ-preterm resulting from substituting si for each De Bruijn index i+ j enclosed into exactly
j λ-abstractions in t. For example, (f 0 1 (λ g 1 2)){0 7→ a, 1 7→ b} = f a b (λ g a b). Given
a λ-preterm t and a tuple s̄n of λ-terms, we abbreviate t{0 7→ s1, . . . , (n − 1) 7→ sn} as
t{(0, . . . , n− 1) 7→ s̄n}.

We write t↓β for the β-normal form of a λ-preterm t.
A λ-preterm s is a subterm of a λ-preterm t, written t = t[s], if t = s, if t = f⟨τ̄m⟩(ū) v

with ui = ui[s] or v = v[s], if t = λ u[s], if t = (u[s]) v, or if t = u (v[s]). A subterm is proper
if it is distinct from the λ-preterm itself.

A λ-preterm is ground if it contains no type variables and no term variables, i.e., if
it is closed and monomorphic. We write T λpre

ground(Σ) for the set of ground λ-preterms and
T λ
ground(Σ) for the set of ground λ-terms.

2.1.3. Preterms and Terms. The set of (pre)terms consists of the βη-equivalence classes of
λ-(pre)terms. For a given set of variables V and signature Σ, we write T (Σ,V) for the set of
all terms and T pre(Σ,V) for the set of all preterms, sometimes omitting the set V when it is
clear from the context. We write Tground(Σ) for the set of ground terms.

When referring to properties of a preterm that depend on the representative of its
equivalence class modulo β (e.g., when checking whether a preterm is ground or whether
a preterm contains a given variable x), we use a β-normal representative as the default
representative of the βη-equivalence class. When referring to properties of a preterm that
depend on the choice of representative modulo η, we state the intended representative
explicitly.
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Clearly, any preterm in β-normal form has one of the following four mutually exclusive
forms:

– x⟨τ⟩ t̄ for a variable x⟨τ⟩ and terms t̄;
– f⟨τ̄⟩(ū) t̄ for a symbol f , types τ̄ , and terms ū, t̄;
– n⟨τ⟩ t̄ for a De Bruijn index n⟨τ⟩ and terms t̄;
– λ⟨τ⟩ t for a term t.

2.1.4. Substitutions. A substitution is a mapping ρ from type variables α ∈ Vty to types αρ
and from term variables x⟨τ⟩ ∈ V to (λ-)terms xρ : τρ. A substitution ρ applied to a (λ-)term
t yields a (λ-)term tρ in which each variable x is replaced by xρ. Similarly, subsitutions can
be applied to types. The notation {ᾱ 7→ τ̄ , x̄ 7→ t̄} denotes a substitution that maps each αi

to τi and each xi to ti, and all other type and term variables to themselves. The composition
ρσ of two substitutions applies first ρ and then σ: tρσ = (tρ)σ. A grounding substitution
maps all variables to ground types and ground (λ-)terms. The notation σ[x̄ 7→ t̄] denotes
the substitution that maps each xi to ti and otherwise coincides with σ.

2.1.5. Clauses. Finally, we define the higher-order clauses on which our calculus operates.
A literal is an unordered pair of two terms s and t associated with a positive or negative sign.
We write positive literals as s ≈ t and negative literals as s ̸≈ t. The notation s ≈̇ t stands
for either s ≈ t or s ̸≈ t. Nonequational literals are not supported and must be encoded as
s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. A clause L1 ∨ · · · ∨ Ln is a finite multiset of literals. The empty clause is
written as ⊥.

2.1.6. Constraints. A constraint is a term pair, written as s ≡ t. A set of constraints
s1 ≡ t1, . . . , sn ≡ tn is true if si and ti are syntactically equal for all i. A set of constraints
S is satisfiable if there exists a substitution such that Sθ is true. A constrained clause C[[S]]
is a pair of a clause C and a finite set of constraints S. We write CH for the set of all
constrained clauses. Similarly, a constrained term t[[S]] is a pair of a term t and a finite set
of constraints S. Terms and clauses are special cases of constrained terms and constrained
clauses where the set of constraints is empty. Given C[[S]] ∈ CH and a grounding substitution
θ such that Sθ is true, we call Cθ a ground instance of C[[S]]. We write Gnd(C[[S]]) for the
set of all ground instances of a constrained clause C[[S]].

2.2. Semantics. The semantics is essentially the same as in Bentkamp et al. [6], adapted
to the modified syntax.

A type interpretation Ity = (U, Jty) is defined as follows. The universe U is a collection
of nonempty sets, called domains. We require that {0, 1} ∈ U. The function Jty associates
a function Jty(κ) : U

n → U with each n-ary type constructor κ, such that Jty(o) = {0, 1}
and for all domains D1,D2 ∈ U, the set Jty(→)(D1,D2) is a subset of the function space
from D1 to D2. The semantics is standard if Jty(→)(D1,D2) is the entire function space for
all D1,D2. A type valuation ξty is a function that maps every type variable to a domain.
The denotation of a type for a type interpretation Ity and a type valuation ξty is recursively
defined by JαKξtyIty

= ξty(α) and Jκ(τ̄)KξtyIty
= Jty(κ)(Jτ̄KξtyIty

).
Given a type interpretation Ity and a type valuation ξty, a term valuation ξte assigns an

element ξte(x) ∈ JτKξtyIty
to each variable x : τ . A valuation ξ = (ξty, ξte) is a pair of a type

valuation ξty and a term valuation ξte.
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An interpretation function J for a type interpretation Ity associates with each symbol
f : Πᾱm. τ̄ ⇒ υ, a domain tuple D̄m ∈ Um, and values ā ∈ Jτ̄KξtyIty

a value J(f, D̄m, ā) ∈ JυKξtyIty
,

where ξty is a type valuation that maps each αi to Di. We require that

(I1) J(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = 1
(I2) J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0
(I3) J(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = min {a, b}
(I4) J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = max {a, b}

(I5) J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = 1− a
(I6) J(→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = max {1− a, b}
(I7) J(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈,D)(c, d) = 1 if c = d and 0 otherwise
(I8) J( ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈,D)(c, d) = 0 if c = d and 1 otherwise

for all a, b ∈ {0, 1}, D ∈ U, and c, d ∈ D.
The comprehension principle states that every function designated by a λ-expression is

contained in the corresponding domain. Loosely following Fitting [17, Sect. 2.4], we initially
allow λ-expressions to designate arbitrary elements of the domain, to be able to define the
denotation of a λ-term. We impose restrictions afterward using the notion of a proper
interpretation, enforcing comprehension.

A λ-designation function L for a type interpretation Ity is a function that maps a
valuation ξ and a λ-expression of type τ to elements of JτKξtyIty

. We require that the value
L(ξ, t) depends only on values of ξ at type and term variables that actually occur in t.
A type interpretation, an interpretation function, and a λ-designation function form an
interpretation I = (Ity, J,L).

For an interpretation I and a valuation ξ, the denotation of a λ-term is defined as
JxKξI = ξte(x), Jf⟨τ̄⟩(s̄)KξI = J(f, Jτ̄KξtyIty

, Js̄KξI), Js tKξI = JsKξI(JtK
ξ
I), and Jλ⟨τ⟩ tKξI = L(ξ, λ⟨τ⟩ t).

For ground λ-terms t, the denotation does not depend on the choice of the valuation ξ,
which is why we sometimes write JtKI for JtKξI .

An interpretation I is proper if Jλ⟨τ⟩ tK(ξty,ξte)I (a) = Jt{0 7→ x}K(ξty,ξte[x 7→a])
I for all λ-

expressions λ⟨τ⟩ t and all valuations ξ, where x is a fresh variable. Given an interpretation
I and a valuation ξ, a positive literal s ≈ t (resp. negative literal s ̸≈ t) is true if JsKξI and
JtKξI are equal (resp. different). A clause is true if at least one of its literals is true. A
constrained clause C[[s1 ≡ t1, . . . , sn ≡ tn]] is true if C ∨ s1 ̸≈ t1 ∨ · · · ∨ sn ̸≈ tn is true. A
set of constrained clauses is true if all its elements are true. A proper interpretation I is a
model of a set N of constrained clauses, written I |= N , if N is true in I for all valuations ξ.
Given two sets M,N of constrained clauses, we say that M entails N , written M |= N , if
every model of M is also a model of N .

2.3. The Extensionality Skolem Constant. Any given signature can be extended with
a distinguished constant diff : Πα, β. (α → β, α → β) ⇒ α, which we require for our calculus.
Interpretations as defined above can interpret the constant diff arbitrarily. The intended
interpretation of diff is as follows:

Definition 2.1. We call a proper interpretation I diff-aware if I is a model of the exten-
sionality axiom—i.e.,

I |= z (diff⟨α, β⟩(z, y)) ̸≈ y (diff⟨α, β⟩(z, y)) ∨ z ≈ y

Given two setsM,N of constrained clauses, we writeM |≈ N if every diff-aware interpretation
that is a model of M is also a model of N .

Our calculus is sound and refutationally complete w.r.t. |≈ but unsound w.r.t. |=.
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3. Calculus

The optimistic λ-superposition calculus is designed to process an unsatisfiable set of higher-
order clauses that have no constraints and do not contain constants with parameters, to
enrich this clause set with clauses that may have constraints and may contain the constant
diff, and to eventually derive an empty clause with satisfiable constraints.

Central notions used to define the calculus are green subterms (Section 3.1), which
many of the calculus rules are restricted to, and complete sets of unifiers up to constraints
(Section 3.2), which replace the first-order notion of a most general unifier. Existing unifica-
tion algorithms must be adapted to cope with terms containing parameters (Section 3.3).
The calculus is parameterized by a term order and a selection function, which must fulfill
certain requirements (Section 3.4). The concrete term orders defined in a companion article
fulfill the requirements (Section 3.5). Our core inference rules describe how the calculus
derives new clauses (Section 3.6), and a redundancy criterion defines abstractly under which
circumstances clauses may be deleted and when inferences may be omitted (Section 3.7).
The abstract redundancy criterion supports a wide collection of concrete simplification rules
(Section 3.8). Examples illustrate the calculus’s strengths and limitations (Section 3.9).

3.1. Orange, Yellow, and Green Subterms. As in the original λ-superposition calculus,
a central notion of our calculus is the notion of green subterms. These are the subterms that
we consider for superposition inferences. For example, in the clause f a ̸≈ b, a superposition
inference at a or f a is possible, but not at f. Our definition here deviates from Bentkamp et
al. [6] in that functional terms never have nontrivial green subterms.

In addition to green subterms, we define yellow subterms, which extend green subterms
with subterms inside λ-expressions, and orange subterms, which extend yellow subterms
with subterms containing free De Bruijn indices. Orange subterms are the subterms that
our redundancy criterion allows simplification rules to rewrite at. For example, the clauses
λ c ̸≈ b and f x x ≈ c can make λ f 0 0 ̸≈ b redundant (assuming a suitable clause order), but
g a ̸≈ b and g ≈ f cannot make f a ̸≈ b redundant. It is convenient to define orange subterms
first, then derive yellow and green subterms based on orange subterms.

Orange subterms depend on the choice of βη-normal form:

Definition 3.1 (βη-Normalizer). Given a preterm t, let t ↓βηlong be its β-normal η-long
form and let t ↓βηshort be its β-normal η-short form. A βη-normalizer is a function ↓βη ∈
{↓βηlong, ↓βηshort}.

Definition 3.2 (Orange Subterms). We start by defining orange positions and orange
subterms on λ-preterms.

Given a list of natural numbers p and s, t ∈ T λpre(Σ), we say that p is an orange position
of t, and s is an orange subterm of t at p, written t|p = s, if this can be derived inductively
from the following rules:

1. u|ε = u for all u ∈ T λpre(Σ), where ε is the empty list.
2. If ui|p = v, then (f⟨τ̄⟩(s̄) ūn)|i.p = v for all f ∈ Σ, types τ̄ , λ-preterms s̄, ūn, v ∈ T λpre(Σ),

and 1 ≤ i ≤ n.
3. If ui|p = v, then (m⟨τ⟩ ūn)|i.p = v for all De Bruijn indices m, types τ , λ-preterms

ūn, v ∈ T λpre(Σ), and 1 ≤ i ≤ n.
4. If u|p = v, then (λ⟨τ⟩ u)|1.p = v for all types τ and λ-preterms u, v ∈ T λpre(Σ).
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We extend these notions to preterms as follows. Given a βη-normalizer ↓βη, a list of natural
numbers p and s, t ∈ T pre(Σ), we say that p is an orange position of t, and s is an orange
subterm of t at p w.r.t. ↓βη, written t|p = s, if (t↓βη)|p = s↓βη.

The context u[ ] surrounding an orange subterm s of u[s] is called an orange context.
The notation u s p or u s indicates that s is an orange subterm in u[s] at position p, and
u indicates that u[ ] is an orange context.

Example 3.3. Whether a preterm is an orange subterm of another preterm depends on the
chosen βη-normal form ↓βη. For example, the preterms f 0 and 0 are orange subterms of λ f 0
in η-long form, but they are not orange subterms of the η-short form f of the same term.

Remark 3.4. The possible reasons for a subterm not to be orange are the following:

– It is applied to arguments.
– It occurs inside a parameter.
– It occurs inside an argument of an applied variable.

Definition 3.5 (Yellow Subterms). Let ↓βη be a βη-normalizer. A yellow subterm w.r.t.
↓βη is an orange subterm that does not contain free De Bruijn indices. A yellow position
w.r.t. ↓βη is an orange position that identifies a yellow subterm. The context surrounding a
yellow subterm is called a yellow context.

Lemma 3.6. Whether a preterm is a yellow subterm of another preterm is independent of
↓βη. (On the other hand, its yellow position may differ.)

Proof. It suffices to show that a single η-expansion or η-contraction from a β-reduced λ-
preterm s into another β-reduced λ-preterm cannot remove yellow subterms. This suffices
because only such η-conversations are needed to transform a β-normal η-long form into a
β-normal η-short form and vice versa.

Assume s has a yellow subterm at yellow position p. Consider the possible forms that a
β-reduced λ-preterm s can have:

– x⟨τ⟩ t̄ for a variable x⟨τ⟩ and λ-preterms t̄;
– f⟨τ̄⟩(ū) t̄ for a symbol f, types τ̄ , and λ-preterms ū, t̄;
– n⟨τ⟩ t̄ for a De Bruijn index n⟨τ⟩ and λ-preterms t̄;
– λ⟨τ⟩ t for a λ-preterm t.

Consider where an η-conversion could happen: If an η-expansion takes place at the left-hand
side of an application, the result is not β-reduced. If an η-reduction takes place at the
left-hand side of an application, the original λ-preterm is not β-reduced. If the yellow
subterm at p does not overlap with the place of η-conversion, the η-conversion has no
effect on the yellow subterm. This excludes the case where the η-conversion takes place in
an argument of an applied variable or in a parameter. So the only relevant subterms for
η-conversions are (a) the entire λ-preterm s, (b) a subterm of t̄ in f⟨τ̄⟩(ū) t̄, (c) a subterm of
t̄ in n⟨τ⟩ t̄, or (d) a subterm of t in λ⟨τ⟩ t.

Next, we consider the possible positions p. If the η-conversion takes place inside of
the yellow subterm, it certainly remains orange because orange subterms only depend on
the outer structure of the λ-preterm. It also remains yellow because η-conversion does not
introduce free De Bruijn indices. This covers in particular the case where p is the empty list.
Otherwise, the yellow subterm at p is also (i) a yellow subterm of t̄ in f⟨τ̄⟩(ū) t̄, (ii) a yellow
subterm of t̄ in n⟨τ⟩ t̄, or (iii) a yellow subterm of t in λ⟨τ⟩ t. In cases (b), (c), and (d), we
can apply the induction hypothesis to t̄ or t and conclude that the yellow subterm of t̄ or t
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remains yellow and thus the yellow subterm of s at p remains yellow as well. In case (a), we
distinguish between the cases (i) to (iii) described above:

(i) Then the only option is an η-expansion of f⟨τ̄⟩(ū) t̄ to λ f⟨τ̄⟩(ū) t̄ 0. Clearly, the yellow
subterm in t̄ remains yellow, although its yellow position changes.

(ii) Analogous to (i).
(iii) Here, one option is an η-expansion of λ t to λ λ t 0, which can be treated analogously

to (i).
The other option is an η-reduction of λ t to t′, where t = t′ 0. We must show that a

yellow subterm of t is also a yellow subterm of t′. Since a yellow subterm of t cannot
contain the free De Bruijn index 0, the λ-preterm t′ must be of the form v w̄, where
the preterm v is a symbol or a De Bruijn index and the yellow subterm of t = v w̄ 0
must be a yellow subterm of one of the arguments w̄. Then it is also a yellow subterm
of v w̄ = t′.

Definition 3.7 (Green Subterms). A green position is an orange position p such that each
orange subterm at a proper prefix of p is nonfunctional. Green subterms are orange subterms
at green positions. The context surrounding a green subterm s of u[s] is called a green
context. The notation u s p or u s indicates that s is a green subterm in u[s] at position
p, and u indicates that u[ ] is a green context.

Clearly, green subterms can equivalently be described as follows: Every term is a green
subterm of itself. If u is nonfunctional, then every green subterm of one of its arguments
si is a green subterm of u = f(t̄) s̄ and of u = n t̄. Moreover, since η-conversions can occur
only at functional subterms, both green subterms and green positions do not depend on the
choice of a βη-normalizer ↓βη.

Example 3.8. Let ι be a type constructor. Let α be a type variable. Let x : ι → ι be a
variable. Let a : ι, f : Πα. ι ⇒ (ι → ι) → α, and g : ι → ι → ι be constants. Consider the
term f⟨α⟩(a) (λ g (x a) 0). Its green subterms are the entire term (at position ε) and λ g (x a) 0
(at position 1). Its yellow subterms are the green subterms and x a (at position 1.1.1 w.r.t.
↓βηlong or at position 1.1 w.r.t. ↓βηshort). Its orange subterms w.r.t. ↓βηlong are the yellow
subterms and g (x a) 0 (at position 1.1) and 0 (at position 1.1.2). Using ↓βηshort, the orange
subterms of this term are exactly the yellow subterms.

For positions in clauses, natural numbers are not appropriate because clauses and literals
are unordered. A solution is the following definition:

Definition 3.9 (Orange, Yellow, and Green Positions and Subterms in Clauses). Let C be a
clause, let L = s ≈̇ t be a literal in C, and let p be an orange position of s. Then we call the
expression L.s.p an orange position in C, and the orange subterm of C at position L.s.p is the
orange subterm of s at position p. Yellow positions/subterms and green positions/subterms
of clauses are defined analogously.

Example 3.10. The clause C = K ∨ L with K = f a ̸≈ b and L = c ≈ f a contains
the orange subterm a twice, once at orange position L.(f a).1 and once at orange position
K.(f a).1.
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3.2. Complete Sets of Unifiers up to Constraints. Most of our calculus rules can
be used in conjunction with Huet-style preunification, full unification, and various variants
thereof. Only some rules require full unification. To formulate the calculus in full generality,
we introduce the notion of a complete set of unifiers up to constraints. The definition closely
resembles the definition of a complete set of unifiers, but allows us to unify only partially
and specify the remainder in form of constraints.

Definition 3.11. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers up to constraints is a set P
whose elements are pairs, each containing a substitution and a set of constraints, with the
following properties:

– Soundness: For every (σ, T ) ∈ P and unifier ρ of T , σρ is a unifier of S.
– Completeness: For every unifier θ of S, there exists a pair (σ, T ) ∈ P and a unifier ρ of T

such that xσρ = xθ for all x ∈ X.

Given a set of constraints S and a set X of variables, we let CSUupto
X (S) denote an

arbitrary complete set of unifiers upto constraints with the following properties. First, to
avoid ill-typed terms, we require that for the substittions in CSUupto

X (S) unify the types of
equated terms in S. In practice, this is not a severe restriction because type unification
always terminates. Second, we require that the substitutions σ in CSUupto

X (S) are idempotent
on X—i.e., xσσ = xσ for all x ∈ X, which can always be achieved by renaming variables.

The set X will consist of the free variables of the clauses that the constraints S originate
from and will be left implicit.

Example 3.12. For the constraint y a ≡ f (z b) and X = {y, z}, the set {(σ, {w a ≡ z b})}
with σ = {y 7→ λ f (w 0)} is a complete set of unifiers up to constraints. It is sound
because for every unifier ρ of w a ≡ z b, the subsitution σρ is a unifier of y a ≡ f (z b)
since (y a ≡ f (z b))σ = (f (w a) ≡ f (z b)). It is complete because, for every unifier θ
of y a ≡ f (z b), the term yθ must be of the form λ f t for some preterm t, and then the
substitution ρ = {w 7→ λ t, z 7→ zθ} is a unifier of w a ≡ z b and fulfills xσρ = xθ for
x ∈ {y, z}.

Definition 3.13. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers is a set P of unifiers of S
such that for each unifier θ of S, there exists a substitution σ ∈ P and a substitution ρ such
that xσρ = xθ for all x ∈ X.

Given a set of constraints S and a set X of variables, we write CSUX(S) or CSU(S) for
an arbitrary complete set of unifiers. Again, we require that all elements of CSU(S) unify at
least the types of the terms pairs in S and that all elements of CSU(S) are idempotent.

Equivalently, we could define a complete set of unifiers as a set P of substitutions such
that {(σ, ∅) | σ ∈ P} is a complete set of unifiers up to constraints.

The definitions above require xσρ = xθ only for variables x ∈ X, not for other variables,
because the substitutions should be allowed to use auxiliary variables. For instance, in
Example 3.12 above, for most unifiers θ, it is impossible to find a suitable ρ that fulfills
xσρ = xθ for all variables x, including x = w.

When choosing a strategy to compute complete sets of unifiers up to constraints, there
is a trade-off between how much computation time is spent and how precisely the resulting
substitutions instantiate variables. At one extreme, we can compute a complete set of unifiers,
which instantiates variables as much as possible. At the other extreme, the set containing
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only the identity substitution and the original set of constraints is always a complete set
of unifiers up to constraints, demonstrating that there exist terminating procedures that
compute complete sets of unifiers up to constraints. In between these extremes lies Huet’s
preunification procedure [16, 19]. A good compromise in practice may be to run Huet’s
preunification procedure and to abort after a fixed number of steps, as described in the
following subsection.

3.3. A Concrete Unification Strategy. As a strategy to compute CSUupto, we suggest
the following procedure, which is a bounded variant of Huet’s preunification procedure,
adapted to cope with polymorphism and parameters. This approach avoids coping with
infinite streams of unifiers (except for rules that must use CSU instead of CSUupto) and
resembles Vampire’s strategy [11].

Analogously to what we describe below, for CSU, one can extend procedures for the
computation of complete sets of unifiers, such as Vukmirović et al.’s procedure [31], to cope
with parameters.

Definition 3.14 (Flex-Flex, Flex-Rigid, Rigid-Rigid). Let s ≡ t be a constraint. We write
s and t in β-normal η-long form as s = λ · · ·λ a u1 · · ·up and t = λ · · ·λ b v1 · · · vq, where
a and b are variables, De Bruijn indices, or symbols (possibly with type arguments and
parameters) and ui and vi are preterms. If a and b are both variables, we say that s ≡ t
is a flex-flex constraint. If only one of them is a variable, we say that s ≡ t is a flex-rigid
constraint. If neither a nor b is a variable, we say that s ≡ t is a rigid-rigid constraint.

The Huet preunification procedure computes a substitution that unifies a set of con-
straints up to flex-flex pairs. It works as follows. Given a finite set of constraints S0, we
construct a search tree whose nodes are either failure nodes é or pairs (σ, S) of a substitution
σ and a set S of constraints. The root node is the pair ({}, S0). Any node (σ, S) where S
contains only flex-flex constraints is a successful leaf node. All failure nodes é are also leaf
nodes. To construct the children of any other node (σ, S), we pick one of the constraints
s ≡ t ∈ S that is not a flex-flex constraint and apply the following rules:

– Type unificaiton: We attempt to unify the types of s and t, which can be done using
a first-order unification procedure. If the types are unifiable with a most general type
unifier ρ, we add a child node (σρ, Sρ). Otherwise, we add a child node é.

– If the types of s and t are equal, we write s = λ · · ·λ a u1 · · ·up and t = λ · · ·λ b v1 · · · vq
as in Definition 3.14 and apply the following rules:
– Rigid-rigid cases: Let S′ = S \ {s ≡ t}.

∗ If a and b are different De Bruijn indices, or if one of them is De Bruijn index and
the other a symbol, we add a child node é.

∗ If a and b are identical De Bruijn indices, we add a child node (σ, S′ ∪ {u1 ≡
v1, . . . , up ≡ vp}).

∗ If a = f⟨τ̄⟩(s1, . . . , sk) and b = g⟨τ̄⟩(t1, . . . , tl) with f ̸= g, we add a child node é.
∗ If a = f⟨τ̄⟩(s1, . . . , sk) and b = f⟨ῡ⟩(t1, . . . , tk) where τ̄ and ῡ are not unifiable, we
add a child node é.

∗ If a = f⟨τ̄⟩(s1, . . . , sk) and b = f⟨ῡ⟩(t1, . . . , tk) where τ̄ and ῡ are unifiable with a
most general type unifier ρ, we add a child node (σρ, (S′ ∪ {s1 ≡ t1, . . . , sk ≡ tk, u1 ≡
v1, . . . , up ≡ vp})ρ).

– Flex-rigid cases: Let τ1 → · · · → τp → τ be the type of a and υ1 → · · · → υq → τ be
the type of b.
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∗ Imitation: If a is a variable x and b is either a De Bruijn index or a symbol
(possibly with type arguments and parameters), we add a child node (σρ, Sρ) with
ρ = {x 7→ λ⟨τ1⟩ · · ·λ⟨τp⟩ b (y1 (p − 1) · · · 0) · · · (yq (p − 1) · · · 0)}, where y1, . . . , yq
are fresh variables with yi of type τ1 → · · · → τp → υi for each i.

∗ Projection: If a is a variable x and b is either a De Bruijn index or a symbol
(possibly with type arguments and parameters), then for each 0 ≤ i < p where
τi = τ ′1 → · · · → τ ′k → τ for some τ ′1, . . . , τ

′
k, we add a child node (σρ, Sρ) with

ρ = {x 7→ λ⟨τ1⟩ · · ·λ⟨τp⟩ i (y1 (p − 1) · · · 0) · · · (yk (p − 1) · · · 0)}, where y1, . . . , yk
are fresh variables with yi of type τ1 → · · · → τp → τ ′j for each j.

∗ The same applies with the roles of a and b swapped.

Ultimately, the tree’s leaf nodes are either failure nodes é or success nodes (σ, S), where S
contains only flex-flex constraints and σ is the corresponding preunifier. Collecting all the
preunifiers in the leaves yields the result of the standard, i.e., unbounded, Huet preunification
procedure.

We propose to use a bounded variant instead to ensure that unification always terminates.
In the bounded version, we construct the tree only up to a predetermined depth. Collecting
all unifiers and their associated constraints in the leaves of the resulting tree also yields
a complete set of unifiers up to constraints, which we can use in the role of the CSUupto

function of our core inference rules.
In addition, following Vukmirović et al. [31], we propose to extend this procedure with

algorithms for decidable fragments such as pattern unification [22], fixpoint unification [19],
and solid unification [31]. When one of these fragments applies to one of the constraints
s ≡ t of a node (σ, S), the most general unifier ρ for this constraint can be determined in
finite time, and we can add a single child node (σρ, (S \ {s ≡ t})ρ) instead of the child nodes
that would be added by the standard procedure.

Lemma 3.15. The above procedure yields a complete set of unifiers up to constraints
(Definition 3.11).

Proof. Let S0 be a set of constraints. Consider a search tree constructed by the above
procedure. We must show that the successful leaves P of the tree form a complete set of
unifiers up to constraints, i.e., we must show:

– Soundness: For every (σ, T ) ∈ P and unifier ρ of T , σρ is a unifier of S0.
– Completeness: For every unifier θ of S0, there exists a pair (σ, T ) ∈ P and a unifier ρ of

T such that xσρ = xθ for all x ∈ X.

For soundness, we prove the following more general property: For every node (σ, T ) of the
tree and every unifier ρ of T , the substitution σρ is a unifier of S0. It is easy to check that
the initial node has this property and that for each of the rules above, the constucted child
node has the property if the parent node has it. Thus, soundness follows by induction on
the structure of the tree.

For completeness, we prove the following more general property: Given a node (σ0, U0)
of the tree and a unifier θ0 of U0, there exists a pair (ω, V ) ∈ P and a unifier π of V such
that xωπ = xσ0θ0 for all x ∈ X.

Since the search tree is clearly finite, we can apply structural induction on the tree. So
we may assume that the property holds for all child nodes of (σ0, U0). We proceed by a case
distinction analogous to the cases describing the procedure above.
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If no decidable fragment applies to U0 and U0 contains only flex-flex pairs or if the depth
limit has been reached, then (σ0, U0) is a leaf node. Then (σ0, U0) ∈ P and the property
holds with π = θ0.

Otherwise, if a decidable fragment applies to a constraint s ≡ t ∈ U0 and provides a
most general unifier ρ, then we have a child node (σ0ρ, (U0 \ {s ≡ t})ρ). Since ρ is a most
general unifier, there exists a substitution θ1 such that yθ0 = yρθ1 for all variables y in
xσ0 with x ∈ X and for all variables y in U0. So θ1 is a unifier of (U0 \ {s ≡ t})ρ and by
the induction hypothesis, there exists a pair (ω, V ) ∈ P and a unifier π of V such that
xωπ = xσ0ρθ1 for all x ∈ X. Thus, xωπ = xσ0ρθ1 = xσ0θ0 for all x ∈ X, as required.

Otherwise, no decidable fragment applies to U0 and U0 contains a pair that is not
flex-flex. Then our procedure picks one such pair s ≡ t ∈ U0.

If the types of s and t are not equal, then they must be unifiable because θ0 is a unifier.
So there exists a child node (σ0ρ, U0ρ), where ρ is the most general type unifier of s and t.
We can then proceed as in the decidable fragment case above.

Otherwise, the types of s and t are equal. Let s = λ · · ·λau1 · · ·up and t = λ · · ·λbv1 · · · vq
as in Definition 3.14.

If s ≡ t is a rigid-rigid pair, then a and b must be unifiable because θ0 is a unifier. So a
and b are either identical De Bruijn indices or unifiable symbols. In both cases, we can then
proceed analogously to the decidable fragment case above.

If s ≡ t is a flex-rigid pair, we assume without loss of generality that a is a variable x.
Since θ0 is a unifier of s and t and parameters cannot contain free De Bruijn indices, the
term aθ0 must be either of the form λ · · · λ b s̄ for some terms s̄ or of the form λ · · · λ i s̄
for some De Bruijn index i and terms s̄. In the first case, we apply the induction hypothesis
to the child node produced by the imitation rule, and in the second case, we apply the
induction hypothesis to the child node produced by the projection rule. In both cases,
given the substitution ρ used by the rule, it is easy to construct a substitution θ1 such that
yθ0 = yρθ1 for all relevant variables y. Then we can proceed as in the decidable fragment
case above.

For an efficient implementation, it is important to βη-normalize terms and apply
substitutions lazily, similarly to the approach of Vukmirović et al. [31].

3.4. Term Orders and Selection Functions. Our calculus is parameterized by a relation
≻ on constrained terms, constrained literals, and constrained clauses. We call ≻ the term
order, but it need not formally be a partial order. Moreover, our calculus is parameterized
by a literal selection function.

The original λ-superposition calculus also used a nonstrict term order ≿ to compare
terms that may become equal when instatiated, such as x b ≿ x a, where b ≻ a. However,
contrary to the claims made for the original λ-superposition calculus, employing the nonstrict
term order can lead to incompleteness [7], which is why we do not use it in our calculus.

Moreover, the original λ-superposition calculus used a Boolean selection function to
restrict inferences on clauses containing Boolean subterms. For simplicity, we omit this
feature in our calculus because an evaluation did not reveal any practical benefit [26].

Definition 3.16 (Admissible Term Order). A relation ≻ on constrained terms and on
constrained clauses is an admissible term order if it fulfills the following criteria, where ⪰
denotes the reflexive closure of ≻:

(O1) the relation ≻ on ground terms is a well-founded total order;
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(O2) ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground
terms s, s′, and t;

(O3) ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4) u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5) u ≻ u diff⟨τ, υ⟩(s, t) for all ground types τ, υ and ground terms s, t, u : τ → υ;
(O6) the relation ≻ on ground clauses is the standard extension of ≻ on ground terms via

multisets [1, Sect. 2.4];
(O7) stability under grounding substitutions for terms: t[[T ]] ≻ s[[S]] implies tθ ≻ sθ for all

grounding substitutions θ such that Tθ and Sθ are true;
(O8) stability under grounding substitutions for clauses: D[[T ]] ≻ C[[S]] implies Dθ ≻ Cθ

for all grounding substitutions θ such that Tθ and Sθ are true;
(O9) transitivity on constrained literals: the relation ≻ on constrained literals is transitive;

(O10) for all terms t and s such that t ≻ s and all substitutions θ such that for all type
variables α, the type αθ is ground and such that for all variables x, all variables in
xθ are nonfunctional, if sθ contains a variable outside of parameters, then tθ must
also contain that variable outside of parameters.

Definition 3.17 (Maximality). Given a term order ≻, a literal K of a constrained clause
C[[S]] is maximal if for all L ∈ C such that L[[S]] ⪰ K[[S]], we have L[[S]] ⪯ K[[S]]. It is
strictly maximal if it is maximal and occurs only once in C.

In addition to the term order, our calculus is parameterized by a selection function:

Definition 3.18 (Literal Selection Function). A literal selection function is a mapping
from each constrained clause to a subset of its literals. The literals in this subset are called
selected. Only negative literals and literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ may be selected.

Based on the term order and the selection function, we define eligibility as follows:

Definition 3.19 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution σ in C[[S]]
if it is selected in C[[S]] or there are no selected literals in C[[S]] and Lσ is (strictly) maximal
in (C[[S]])σ.

A green position L.s.p of a clause C[[S]] is eligible w.r.t. a substitution σ if the literal L
is either negative and eligible or positive and strictly eligible (w.r.t. σ in C[[S]]); and L is of
the form s ≈̇ t ∈ C such that (s[[S]])σ ̸⪯ (t[[S]])σ.

3.5. Concrete Term Orders. A companion article [4] defines two concrete term orders
fulfilling the criteria of Definition 3.16: λKBO, inspired by the Knuth–Bendix order, and
λLPO, inspired by the lexicographic path order. Since the companion article defines the orders
only on terms, we extend ≻ykbo and ≻ylpo to literals and clauses via the standard extension
using multisets [1, Sect. 2.4]. We extend the orders to constrained terms, constrained literals,
and constrained clauses by ignoring the constraints.

Theorem 3.20. Let ≻ykbo denote the strict variant of λKBO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols, a function w
assigning weights to symbols, a constant wdb defining the weight of De Bruijn indices, and a
function k assigning argument coefficients to symbols. Assume that these parameters fulfill
w(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = w(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 1, wdb ≥ w(diff), f > ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ > ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all symbols f /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, and k (diff, i) = 1
for every i. Using the extension defined above, ≻ykbo is an admissible term order.
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Proof. For most of the criteria, we use that by Theorems 4.11 and 5.11 of the companion
article, ≻gykbo is the restriction of ≻ykbo to ground terms.

(O1) By Theorems 3.8 and 3.10 of the companion article, ≻gykbo is a total order. By
Theorem 3.11 of the companion article, it is well founded.

(O2) By Theorem 3.14 of the companion article, ≻gykbo is compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.15 of the companion article, ≻gykbo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.16 of the companion article, u ≻gykbo ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻gykbo ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms
u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, using our assumptions about the weight and precedence of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

(O5) By Theorem 3.17 of the companion article, u ≻gykbo u diff⟨τ, υ⟩(s, t) for all ground types
τ, υ and ground terms s, t, u : τ → υ, using our assumptions about the weight and
argument coefficients of diff.

(O6) By definition of our extension of ≻ykbo to clauses.
(O7) By Theorems 4.10 and 5.10 of the companion article. Since we ignore the constraints in

the order, we also have stability under substitutions for constrained terms.
(O8) Using the Dershowitz–Manna definition [15] of a multiset, it is easy to see that stability

under substitutions for terms implies stability under substitutions for clauses. Since
we ignore the constraints in the order, we also have stability under substitutions for
constrained clauses.

(O9) By Theorem 5.13 of the companion article, ≻ykbo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals. Since we ignore
the constraints in the order, it is also transitive on constrained literals.

(O10) By Theorem 5.14 of the companion article.

Theorem 3.21. Let ≻ylpo denote the strict variant of λLPO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols and a watershed
symbol ws. Assume that f > ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ > ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all symbols f /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, that ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≤ ws, and that
diff ≤ ws. Using the extension defined above, ≻ylpo is an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.20 and 5.17 of the companion
article, ≻gylpo is the restriction of ≻ylpo to ground terms.

(O1) By Theorems 3.21 and 3.22 of the companion article, ≻gylpo is a total order. By
Theorem 3.23 of the companion article, it is well founded.

(O2) By Theorem 3.24 of the companion article, ≻gylpo is compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.25 of the companion article, ≻gylpo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.26 of the companion article, u ≻gylpo ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻gylpo ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms
u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, using our assumptions about the precedence of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

(O5) By Theorem 3.27 of the companion article, u ≻gylpo u diff⟨τ, υ⟩(s, t) for all ground types
τ, υ and ground terms s, t, u : τ → υ, using our assumption about the precedence of diff.

(O6) By definition of our extension of ≻ylpo to clauses.
(O7) By Theorems 4.19 and 5.16 of the companion article. Since we ignore the constraints in

the order, we also have stability under substitutions for constrained terms.
(O8) Using the Dershowitz–Manna definition [15] of a multiset, it is easy to see that stability

under substitutions for terms implies stability under substitutions for clauses. Since
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we ignore the constraints in the order, we also have stability under substitutions for
constrained clauses.

(O9) By Theorem 5.19 of the companion article, ≻ylpo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals. Since we ignore
the constraints in the order, it is also transitive on constrained literals.

(O10) By Theorem 5.20 of the companion article.

3.6. The Core Inference Rules. The optimistic λ-superposition calculus consists of the
following core inference rules, which a priori must be performed to guarantee refutational
completeness. The calculus is parameterized by an admissible term order ≻ and a selection
function hsel . We denote this calculus as HInf ≻,hsel or just HInf .

Each of our inference rules describes a collection of inferences, which we formally define
as follows:

Definition 3.22. An inference ι is a tuple (C1, C2, . . . , Cn+1) of constrained clauses, written

C1 C2 · · · Cn

Cn+1

The constrained clauses C1, C2, . . . , Cn are called premises, denoted by prems(ι), and Cn+1

is called conclusion, denoted by concl(ι). The clause Cn is called the main premise of
ι, denoted by mprem(ι). We assume that the premisses of an inference do not have any
variables in common, which can be achieved by renaming them apart when necessary.

Our variant of the superposition rule, originating from the standard superposition
calculus, is stated as follows:

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ [[T ]] C u [[S]]

Sup
(D′ ∨ C t′ )σ [[U ]]

1. (σ, U) ∈ CSUupto(T, S, t ≡ u);
2. u is not a variable;
3. uσ is nonfunctional;
4. (t[[T ]])σ ̸⪯ (t′[[T ]])σ;
5. the position of u is eligible in C[[S]] w.r.t. σ;
6. t ≈ t′ is strictly maximal in D[[T ]] w.r.t. σ;
7. there are no selected literals in D[[T ]].

The rule FluidSup simulates superposition below applied variables:
D︷ ︸︸ ︷

D′ ∨ t ≈ t′ [[T ]] C u [[S]]
FluidSup

(D′ ∨ C z t′ [[T, S]])σ

with the following side conditions, in addition to Sup’s conditions 3 to 7:

1. σ ∈ CSU(z t ≡ u);
2. u is not a variable but is variable-headed;
8. z is a fresh variable;
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9. (z t)σ ̸= (z t′)σ;
10. zσ ̸= λ 0.

The equality resolution rule EqRes and the equality factoring rule EqFact also originate
from the standard superposition calculus:

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u′ [[S]]

EqRes
C ′σ [[U ]]

C︷ ︸︸ ︷
C ′ ∨ u′ ≈ v′ ∨ u ≈ v [[S]]

EqFact
(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′)σ [[U ]]

Side conditions for EqRes:

1. (σ, U) ∈ CSUupto(S, u ≡ u′);
2. u ̸≈ u′ is eligible in C [[S]] w.r.t. σ.

Side conditions for EqFact:

1. (σ, U) ∈ CSUupto(S, u ≡ u′);
2. u ≈ v is eligible in C [[S]] w.r.t. σ;
3. there are no selected literals in C [[S]];
4. (u [[S]])σ ̸⪯ (v [[S]])σ.

The following rules Clausify, BoolHoist, LoobHoist, and FalseElim are responsi-
ble for converting Boolean terms into clausal form. The rules BoolHoist and LoobHoist
each come with an analogue, respectively called FluidBoolHoist and FluidLoobHoist,
which simulates their application below applied variables.

C ′ ∨ s ≈ t [[S]]
Clausify

(C ′ ∨ D [[S]])σ

with the following side conditions:

1. σ ∈ CSU(s ≡ s′, t ≡ t′);
2. s ≈ t is strictly eligible in C [[S]] w.r.t. σ;
3. s is not a variable;
4. the triple (s′, t′, D) is one of the following, where α is a fresh type variable and x and y

are fresh term variables:

(x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨α⟩ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ y) (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨α⟩ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ̸≈ y)

(x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈⟨α⟩ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ̸≈ y) (x ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈⟨α⟩ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ y)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬x, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

C u [[S]]
BoolHoist

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ [[S]])σ

C u [[S]]
LoobHoist

(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ [[S]])σ

each with the following side conditions:

1. σ is the most general type substitution such that uσ is of Boolean type (i.e., the identity
if u is of Boolean type or {α 7→ o} if u is of type α for some type variable α);

2. u is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
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3. the position of u is eligible in C [[S]] w.r.t. σ;
4. the occurrence of u is not in a literal of the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

C u [[S]]
FluidBoolHoist

(C z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ [[S]])σ

1. u is not a variable but is variable-headed;
2. uσ is nonfunctional;
3. x is a fresh variable of Boolean type, and z is a fresh variable of function type from

Boolean to the type of u;
4. σ ∈ CSU(z x ≡ u);
5. (z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ ̸= (z x)σ;
6. zσ ̸= λ 0;
7. xσ ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and xσ ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
8. the position of u is eligible in C [[S]] w.r.t. σ.

C u [[S]]
FluidLoobHoist

(C z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ [[S]])σ

with the same side conditions as FluidBoolHoist, but where ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is replaced by ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ in
condition 5.

C︷ ︸︸ ︷
C ′ ∨ s ≈ t [[S]]

FalseElim
C ′σ [[U ]]

with the following side conditions:

1. (σ, U) ∈ CSUupto(S, s ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, t ≡ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤);
2. s ≈ t is strictly eligible in C [[S]] w.r.t. σ.

The argument congruence rule ArgCong and the extensionality rule Ext convert
functional terms into nonfunctional terms. The rule Ext also comes with an analogue
FluidExt, which simulates its application below applied variables.

C︷ ︸︸ ︷
C ′ ∨ s ≈ s′ [[S]]

ArgCong
C ′σ ∨ sσ x ≈ s′σ x [[Sσ]]

with the following side conditions:

1. σ is the most general type substitution such that sσ is functional (i.e., the identity if s is
functional or {α 7→ (β → γ)} for fresh β and γ if s is of type α for some type variable α);

2. s ≈ s′ is strictly eligible in C [[S]] w.r.t. σ;
3. x is a fresh variable.

C u [[S]]
Ext

Cσ y ∨ uσ (diff⟨τ, υ⟩(uσ, y)) ̸≈ y (diff⟨τ, υ⟩(uσ, y)) [[Sσ]]
with the following side conditions:
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1. σ is the most general type substitution such that uσ is of type τ → υ for some τ and υ;
2. y is a fresh variable of the same type as uσ;
3. the position of u is eligible in C [[S]] w.r.t. σ.

C u [[S]]
FluidExt

(C z y ∨ x (diff⟨α, β⟩(x, y)) ̸≈ y (diff⟨α, β⟩(x, y)) [[S]])σ

with the following side conditions:

1. u is not a variable but is variable-headed;
2. uσ is nonfunctional;
3. x and y are fresh variables of type α → β, and z is a fresh variable of function type from

α → β to the type of u;
4. σ ∈ CSU(S, z x ≡ u);
5. (z x)σ ̸= (z y)σ;
6. zσ ̸= λ 0;
7. the position of u is eligible in C [[S]] w.r.t. σ.

Our calculus also includes the following axiom (i.e., nullary inference rule), which
establishes the interpretation of the extensionality Skolem constant diff.

Diff
y (diff⟨α, β⟩(y, z)) ̸≈ z (diff⟨α, β⟩(y, z)) ∨ y x ≈ z x

3.7. Redundancy. Our calculus includes a redundancy criterion that can be used to delete
certain clauses and avoid certain inferences deemed redundant. The criterion is based on a
translation to ground monomorphic first-order logic.

Let Σ be a higher-order signature. We require Σ to contain a symbol diff : Πα, β.(α → β,
α → β) ⇒ α. Based on this higher-order signature, we construct a first-order signature F (Σ)
as follows. The type constructors are the same, but → is an uninterpreted symbol in the
first-order logic. For each ground higher-order term of the form f⟨τ̄⟩(ū) : τ1 → · · · → τm → τ ,
with m ≥ 0, we introduce a first-order symbol f τ̄ū : τ1×· · ·× τm ⇒ τ . Moreover, we introduce
a first-order symbol funt : τ1×· · ·×τn ⇒ (τ → υ) for each expression t obtained by replacing
each outermost proper yellow subterm in a higher-order term of type τ → υ by a placeholder
symbol □, where τ1, . . . , τn are the types of the replaced subterms in order of occurrence.

We define an encoding F from higher-order ground terms to first-order terms:

Definition 3.23. For ground terms t, we define F recursively as follows: If t is functional,
then let t′ be the expression obtained by replacing each outermost proper yellow subterm
in t by the placeholder symbol □, and let F (t) = funt′(F (s̄n)), where s̄n are the replaced
subterms in order of occurrence. Otherwise, t is of the form f⟨τ̄⟩(ū) t̄m, and we define
F (t) = f τ̄ū(F (t̄1), . . . ,F (t̄m)).

For clauses, we apply F on each side of each literal individually.

Example 3.24. F (λ (f (λ 1) (λ (λ 0)))) = funλ (f (λ 1) □)(funλ □(funλ 0)).

Remark 3.25. A simpler yet equivalent formulation of the redundancy criterion can be
obtained by defining F (t) = funt for functional terms t, without using the □ symbol. The
completeness proof, however, would become more complicated.
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Lemma 3.26. The map F is a bijection between higher-order ground terms and first-order
ground terms.

Proof. We can see that F (s) = F (t) implies s = t for all ground s and t by structural
induction on F (s). Moreover, we can show that for each first-order ground term t, there
exists an s such that F (s) = t by structural induction on t. Injectivity and surjectivity
imply bijectivity.

We consider two different semantics for our first-order logic: |=fol and |=oλ. The
semantics |=fol is the standard semantics of first-order logic. The semantics |=oλ restricts
|=fol to interpretations I with the following properties:

– Interpreted Booleans: The domain of the Boolean type has exactly two elements, J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KI and
J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KI, and the symbols ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ , ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ are interpreted as the corresponding logical
operations.

– Extensionality w.r.t. diff: For all ground u,w : τ → υ, if I |=fol F (u diff⟨τ, υ⟩(s, t)) ≈
F (w diff⟨τ, υ⟩(s, t)) for all ground s, t : τ → υ, then I |=fol F (u) ≈ F (w).

– Argument congruence w.r.t. diff: For all ground u,w, s, t : τ → υ, if I |=fol F (u) ≈ F (w),
then I |=fol F (u diff⟨τ, υ⟩(s, t)) ≈ F (w diff⟨τ, υ⟩(s, t)).
As another building block of our redundancy criterion, we introduce the notion of trust.

As a motivating example, consider the clauses b ̸≈ a and b ≈ a, where b ≻ a. Clearly, the
empty clause can be derived via a Sup and a EqRes inference. If we replace the clause
b ≈ a with the logically equivalent clause x ̸≈ a [[x ≡ b]], however, an empty clause with
satisfiable constraints cannot be derived because Sup does not apply at variables. In this
sense, the clause b ̸≈ a is more powerful than x ̸≈ a [[x ≡ b]]. Technically, the reason for
this is that the calculus is only guaranteed to derive contradictions entailed by so-called
variable-irreducible instances of clauses, and the instance of x ̸≈ a [[x ≡ b]] that maps x to
b is not variable-irreducible. Since variable-irreducibility cannot be computed in general,
when we replace a clause with another, we use the notion of trust to ensure that for every
variable-irreducible instance of the replaced clause, there exists a corresponding variable-
irreducible instance of the replacing clause. Concretely, for any variable that occurs in a
constraint or in a parameter of the replacing clause, there must exist a variable in a similar
context in the replaced clause. The formal definition is as follows.

Definition 3.27 (Trust). Let Cθ be a ground instance of C[[S]] ∈ CH and Dρ be a ground
instance of D[[T ]] ∈ CH. We say that the θ-instance of C[[S]] trusts the ρ-instance of D[[T ]] if
for each variable x in D,

(i) for every literal L ∈ D containing x outside of parameters, there exists a literal K ∈ C
and a substitution σ such that zθ = zσρ for all variables z in C and L ⪯ Kσ; or

(ii) x neither occurs in parameters in D nor appears in T .

The most general form of redundancy criteria for constrained superposition calculi are
notoriously difficult to apply to concrete simplification rules. In the spirit of Nieuwenhuis
and Rubio [23], we therefore introduce a simpler, less general notion of redundancy that
suffices for most simplification rules. We provide a simple criterion for clauses and one for
inference rules.
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3.7.1. Simple Clause Redundancy. Our redundancy criterion for clauses provides two
conditions that can make a clause redundant. The first condition applies when the ground
instances of a clause are entailed by smaller ground instances of other clauses. It generalizes
the standard superposition redundancy criterion to higher-order clauses with constraints.
The second condition applies when there are other clauses with the same ground instances.
It can be used to justify subsumption. For this second condition, we fix a well-founded
partial order ⊐ on CH, which prevents infinite chains of clauses where each clause is made
redundant by the next one.

Definition 3.28 (Simple Clause Redundancy). Let N ⊆ CH and C[[S]] ∈ CH. We call C[[S]]
simply redundant w.r.t. N , written C[[S]] ∈ HRed⋆

C(N), if for every Cθ ∈ Gnd(C[[S]]) at least
one of the following two conditions holds:

1. There exist an indexing set I and for each i ∈ I a ground instance Diρi of a clause
Di[[Ti]] ∈ N , such that
(a) F ({Diρi | i ∈ I}) |=oλ F (Cθ);
(b) for all i ∈ I, Diρi ≺ Cθ; and
(c) for all i ∈ I, the θ-instance of C[[S]] trusts the ρi-instance of Di[[Ti]].

2. There exists a ground instance Dρ of some D[[T ]] ∈ N such that
(a) Dρ = Cθ;
(b) C[[S]] ⊐ D[[T ]]; and
(c) the θ-instance of C[[S]] trusts the ρ-instance of D[[T ]].

Remark 3.29. Although the calculus is refutationally complete for any choice of ⊐, we
propose the following definition for ⊐. Given a clause C[[S]] with nonempty S and a clause
D with no constraints, we define C[[S]] ⊐ D. For two clauses C and D with no constraints,
following Bentkamp et al. [8, Sect. 3.4], we propose to define C ⊐ D if either C is larger
than D in syntactic size (i.e., number of variables, constants, and De Bruijn indices), or if C
and D have the same syntactic size and C contains fewer distinct variables than D.

3.7.2. Simple Inference Redundancy. To define inference redundancy, we first define a
calculus FInf on ground first-order logic with Booleans. It is parameterized by a relation ≻
on ground first-order terms. For simplicity, there is no selection function, but our notion
of eligibility is adapted to overapproximate any possible selection function as follows. A
literal L ∈ C is (strictly) eligible in C if L is negative or if L is of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or if L is
(strictly) maximal in C. A position L.s.p of a clause C is eligible if the literal L is of the
form s ≈̇ t with s ≻ t and L is either negative and eligible or positive and strictly eligible.

We define green subterms on first-order terms as follows. Every term is a green subterm
of itself. Every direct subterm of a nonfunctional green subterm is also a green subterm. In
keeping with our notation for higher-order terms, we write t u for a term t containing a
green subterm u.
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D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C t

FSup
D′ ∨ C t′

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u

FEqRes
C ′

C︷ ︸︸ ︷
C ′ ∨ u ≈ v′ ∨ u ≈ v

FEqFact
C ′ ∨ v ̸≈ v′ ∨ u ≈ v′

C ′ ∨ s ≈ t
FClausify

C ′ ∨ D

C u
FBoolHoist

C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
C u

FLoobHoist
C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

C︷ ︸︸ ︷
(C ′ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

FFalseElim
C ′

C︷ ︸︸ ︷
(C ′ ∨ F (s) ≈ F (s′))

FArgCong
C ′ ∨ F (s diff⟨τ, υ⟩(u,w)) ≈ F (s′ diff⟨τ, υ⟩(u,w))

C F (u)
FExt

C F (w) ∨ F (u diff⟨τ, υ⟩(u,w)) ̸≈ F (w diff⟨τ, υ⟩(u,w))

FDiff
F (u diff⟨τ, υ⟩(u,w)) ̸≈ F (w diff⟨τ, υ⟩(u,w)) ∨ F (u s) ≈ F (w s)

Side conditions for FSup:

1. t ≻ t′;
2. D ≺ C t ;
3. t is nonfunctional;
4. the position of t is eligible in C t ;
5. t ≈ t′ is strictly eligible in D;
6. if t′ is Boolean, then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

No side conditions for FEqRes. Side conditions for FEqFact:

1. u ≈ v is maximal in C;
2. u ≻ v.

Side conditions for FClausify:

1. s ≈ t is strictly eligible in C ′ ∨ s ≈ t;
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2. the triple (s, t,D) has one of the following forms, where τ is an arbitrary type and u, v
are arbitrary terms:

(u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ v) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ̸≈ v)

(u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ̸≈ v) (u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ v)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

Side conditions for FBoolHoist and FLoobHoist:

1. u is of Boolean type;
2. u ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and u ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤;
3. the position of u is eligible in C;
4. the occurrence of u is not in a literal of the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

Side condition for FFalseElim:

1. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ is strictly eligible in C.

Side conditions for FArgCong:

1. s is of type τ → υ;
2. u,w are ground terms of type τ → υ;
3. F (s) ≈ F (s′) is eligible in C.

Side conditions for FExt:

1. the position of F (u) is eligible in C;
2. the type of u is τ → υ;
3. w is a ground term of type τ → υ;
4. u ≻ w.

Side conditions for FDiff:

1. τ and υ are ground types;
2. u, w, and s are ground terms.

Definition 3.30. Since F is bijective on ground terms by Lemma 3.26, we can convert
a term order ≻ on higher-order terms into a relation ≻F on ground first-order terms as
follows. For two ground first-order terms s and t, let s ≻F t if F −1(s) ≻ F −1(t).

Definition 3.31. Let ι ∈ HInf ≻,hsel for a term order ≻ and a selection function hsel . Let
C1[[S1]], . . . , Cm[[Sm]] be its premises and Cm+1[[Sm+1]] its conclusion. Let (θ1, . . . , θm+1)
be a tuple of grounding substitutions. We say that ι is rooted in FInf for (θ1, . . . , θm+1) if
and only if

– S1θ1, . . . , Sm+1θm+1 are true and
–

F (C1θ1) · · · F (Cmθm)

F (Cm+1θm+1)

is a valid FInf ≻F inference ι′ such that the rule names of ι and ι′ correspond up to the
prefixes F and Fluid.
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Definition 3.32 (Simple Inference Redundancy). Let N ⊆ CH. Let ι ∈ HInf an inference
with premises C1[[S1]], . . . , Cm[[Sm]] and conclusion Cm+1[[Sm+1]]. We call ι simply redundant
w.r.t. N , written ι ∈ HRed⋆

I (N), if for every tuple of substitutions (θ1, . . . , θm+1) for which
ι is rooted in FInf (Definition 3.31), there exists an index set I and for each i ∈ I a ground
instance Diρi of a clause Di[[Ti]] ∈ N such that

1. F ({Diρi | i ∈ I}) |=oλ F (Cm+1θm+1);
2. ι is a Diff inference or for all i ∈ I, Diρi ≺ Cmθm; and
3. for all i ∈ I, the θm+1-instance of Cm+1[[Sm+1]] trusts the ρi-instance of Di[[Ti]].

3.8. Simplification Rules.

3.8.1. Analogues of First-Order Simplification Rules. Our notion of simple clause redun-
dancy (Definition 3.28) can justify most analogues of the simplification rules implemented
in Schulz’s E prover [27, Sections 2.3.1 and 2.3.2]. Deletion of duplicated literals, deletion of
resolved literals, and syntactic tautology deletion adhere to our redundancy criterion, even
when the involved clauses carry constraints. Semantic tautology deletion can be applied
as well, even on constrained clauses, but we must use the entailment relation |=oλ under
the encoding F . Positive and negative simplify-reflect can be applied as well, even with
constraints, as long as the substitution makes each constraint of the unit clause true or
translates it into a constraint already present on the other clause.

Our analogue of clause subsumption is the following. The subsumed clause can have
constraints, but the subsuming clause cannot.

C Cσ ∨ D [[S]]
Subsumption

C

with the following side conditions:

1. D ̸= ⊥ or Cσ[[S]] ⊐ C;
2. C does not contain a variable occurring both inside and outside of parameters.

Lemma 3.33. Subsumption can be justified by simple clause redundancy.

Proof. Let (Cσ ∨ D)θ ∈ Gnd(Cσ ∨ D[[S]]).
If D is nonempty, we apply condition 1 of Definition 3.28, using I = {∗}, D∗ = C and

ρ∗ = σθ. The clause Cσθ is a proper subclause of (Cσ ∨ D)θ and therefore F (Cσθ) |=oλ

F ((Cσ ∨ D)θ) (condition 1a) and Cσθ ≺ (Cσ ∨ D)θ (condition 1b). For condition 1c, let x
be a variable in C. By condition 2 of Subsumption, x occurs only inside parameters or
only outside parameters. If it occurs only inside, we apply condition (i) of Definition 3.27; if
it occurs only outside, we apply condition (ii) of Definition 3.27.

If D is ⊥, we apply condition 2 of Definition 3.28, using C for D and σθ for ρ. Condi-
tion 2a clearly holds. Condition 2b holds by condition 1 of Subsumption. Condition 2c
follows from condition 2 of Subsumption as above.

For rewriting of positive and negative literals (demodulation) and equality subsumption,
we need to establish the following properties of orange subterms first:

Lemma 3.34. Let ↓βη be a βη-normalizer. An orange subterm relation u s p w.r.t. ↓βη
can be disassembled into a sequence s1 . . . sk as follows: s1 is a green subterm of u; sk = s;
and for each i < k, si = λ s′i and si+1 is a green subterm of s′i.
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Proof. By induction on the size of u in η-long form.
If each orange subterm at a proper prefix of p is nonfunctional, then p is green, and we

are done with k = 1 and s1 = s.
Otherwise, let p = q.r such that q is the shortest prefix with nonempty r, where the

orange subterm s1 at q is functional. Then s1 is a green subterm of u at q because there does
not exist a shorter prefix with a functional orange subterm. Moreover, since s1 is functional,
modulo η-conversion, s1 = λs′1 for some s′1. Since r is nonempty and s is the orange subterm
of s1 at r, there exists r′ at most as long as r such that s is the orange subterm of s′1 at
r′. Specifically, if s1↓βη is a λ-abstraction, we use 1.r′ = r and otherwise r′ = r. By the
induction hypothesis, since s is an orange subterm of s′1, there exist s2, . . . , sk with sk = s
such that si = λ s′i and si+1 is a green subterm of s′i for each i < k.

Lemma 3.35. Let ↓βη be a βη-normalizer. Let u be a ground term, and let p be an orange
position of u w.r.t. ↓βη. Let v, v′ be ground preterms such that u v p and u v′ p are terms.
Let k be a number large enough such that v{(0, . . . , k− 1) 7→ t̄k} and v′{(0, . . . , k− 1) 7→ t̄k}
do not contain free De Bruijn indices for all tuples of terms t̄k. Then

{F (v{(0, . . . , k − 1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k}) | each ti of the form diff⟨ , ⟩( , )}
|=oλ F (u v p ≈ u v′ p)

Proof. Let I be a |=oλ-interpretation with

I |=oλ F (v{(0, . . . , k − 1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k})
for all tuples of terms t̄k, where each ti is of the form diff⟨ , ⟩( , ) for arbitrary values of ‘ ’.
By Lemma 3.34, we have u v p = u λ w1 λ w2 · · ·wn v · · · .

Step 1. Since v is a green subterm of wn v and the terms t̄k have a form that does not
trigger β-reductions when substituting them for De Bruijn indices, v{(0, . . . , k − 1) 7→ t̄k} is
a green subterm of wn v {(0, . . . , k − 1) 7→ t̄k} and thus

I |=oλ F (wn v {(0, . . . , k − 1) 7→ t̄k} ≈ wn v′ {(0, . . . , k − 1) 7→ t̄k})

Step 2. Using the property of extensionality w.r.t. diff of |=oλ-interpretations and using
the fact that we have shown the above for all t1 of the form diff⟨ , ⟩( , ), we obtain

I |=oλ F ((λ wn v ){0 7→ t2, . . . , (k − 2) 7→ tk} ≈ (λ wn v′ ){0 7→ t2, . . . , (k − 2) 7→ tk})
Iterating steps 1 and 2 over wn, . . . , w1, u, we obtain

I |=oλ F (u v p ≈ u v′ p)

Our variant of rewriting of positive and negative literals (demodulation) is the following.
The rewritten clause can have constraints, but the rewriting clause cannot.

t ≈ t′ C v [[S]]
Demod

t ≈ t′ C v′ [[S]]

with the following side conditions:

1. tσ = v{(0, . . . , k − 1) 7→ x̄k} and t′σ = v′{(0, . . . , k − 1) 7→ x̄k} for some fresh variables
x̄k and a substitution σ.

2. C v [[S]] ≻ C v′ [[S]];
3. for each tuple t̄k, where each ti is of the form diff⟨ , ⟩( , ), we have C v ≻ v{(0, . . . , k−

1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k};
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4. t ≈ t′ does not contain a variable occurring both inside and outside of parameters.

Remark 3.36. In general, it is unclear how to compute condition 3 of Demod. For λKBO
and λLPO described in Section 3.5, however, the condition can easily be overapproximated
by C v ≻ v ≈ v′, using the fact that the orders are also defined on preterms.

To prove that this is a valid overapproximation, it suffices to show the following: Let
u and s be preterms with u ≻ s (resp. u ≿ s). Let s′ be the result of replacing some De
Bruijn indices in s by terms of the form diff⟨ , ⟩( , ). Then u ≻ s′ (resp. u ≿ s′).

Proof for λKBO: By induction on the rule deriving u ≻ s or u ≿ s. Since we assume in
Section 3.5 that wdb ≥ w(diff) and k (diff, i) = 1 for every i, we have W (s) ≥ W (s′). It is
easy to check that there is always a corresponding rule deriving u ≻ s′ or u ≿ s′, in some
cases using the induction hypothesis.

Proof for λLPO: By induction on the rule deriving u ≻ s or u ≿ s. Considering that we
assume in Section 3.5 that ws ≥ diff, it is easy to check that there is always a corresponding
rule deriving u ≻ s′ or u ≿ s′, in some cases using the induction hypothesis.

Since Demod makes use of orange subterms, it depends on the choice of βη-normalizer.
Both ↓βηlong and ↓βηshort yield a valid simplification rule:

Lemma 3.37. Demod can be justified by simple clause redundancy, regardless of the choice
of βη-normalizer.

Proof. We apply condition 1 of Definition 3.28, using C v [[S]] for C[[S]]. Let C v θ ∈
Gnd(C v [[S]]). Let ∗ be a placeholder we use to extend a set of terms by an additional
element. Then we set

I = {t̄k | each ti is a ground term of the form diff⟨ , ⟩( , )} ∪ {∗}
Dt̄k [[Tt̄k ]] = t ≈ t′

ρt̄k = σ{x̄k 7→ t̄k}θ
D∗[[T∗]] = C v′ [[S]]

ρ∗ = θ

By condition 1 of Demod,

Dt̄kρt̄k = v{(0, . . . , k − 1) 7→ t̄k}θ ≈ v′{(0, . . . , k − 1) 7→ t̄k}θ
= vθ{(0, . . . , k − 1) 7→ t̄k} ≈ v′θ{(0, . . . , k − 1) 7→ t̄k}

for each tuple t̄k, where each ti is of the form diff⟨ , ⟩( , ).
By Lemma 3.35, F ({Diρi | i ∈ I \{∗}}) |=oλ F (uθ vθ ≈ uθ v′θ ), where u is a side of

a literal in C v containing the orange subterm v. Thus F ({Diρi | i ∈ I}) |=oλ F (C v θ)
(condition 1a of simple redundancy). Condition 2 and 3 of Demod imply Diρi ≺ C v θ for
all i ∈ I (condition 1b of simple redundancy).

For condition 1c of simple redundancy, consider first a variable in Dt̄k = t ≈ t′. By
condition 4 of Demod, either condition (ii) or (if the variable occurs only inside parameters)
(i) of trust is fulfilled. Second, consider a variable x in C v′ . Then we apply condition
(i) of trust. For every literal L ∈ C v′ that contains x outside of parameters, we use the
corresponding literal K ∈ C v and the identity substitution for the σ of condition (i). By
condition 2, L ⪯ K.
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Our variant of equality subsumption is the following:

t ≈ t′ C ′ ∨ s v ≈ s′ v′ [[S]]
EqualitySubsumption

t ≈ t′

with the following side conditions:

1. tσ = v{(0, . . . , k − 1) 7→ x̄k} and t′σ = v′{(0, . . . , k − 1) 7→ x̄k} for some fresh variables
x̄k and a substitution σ;

2. for each tuple t̄, where each ti is of the form diff⟨ , ⟩( , ), we have C v ≻ v{(0, . . . , k−
1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k};

3. t ≈ t′ does not contain a variable occurring both inside and outside of parameters.

To compute condition 2, we can exploit Remark 3.36.

Lemma 3.38. EqualitySubsumption can be justified by simple clause redundancy, re-
gardless of the choice of βη-normalizer.

Proof. Analogous to Lemma 3.37.

3.8.2. Additional Simplification Rules. The core inference rules ArgCong, Clausify,
FalseElim, LoobHoist, and BoolHoist described in Section 3.6 can under certain
conditions be applied as simplification rules.

Lemma 3.39. ArgCong can be justified as a simplification rule by simple clause redundancy
when σ is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. Let Cθ be a ground instance of C[[S]]. Let τ → υ be the type of sθ and s′θ. We
apply condition 1 of Definition 3.28, using I = {(u,w) | u,w : τ → υ ground}, D(u,w) =
C ′ ∨ s x ≈ s′ x, T(u,w) = S, and ρ(u,w) = θ[x 7→ diff⟨τ, υ⟩(u,w)]. Condition 1a follows from
the extensionality property of |=oλ. Condition 1b follows from (O5).

For condition 1c, first consider the fresh variable x. Since x is fresh and parameters
cannot contain free De Bruijn indices, x cannot occur in parameters in C ′ ∨ s x ≈ s′ x, and
thus condition (ii) of Definition 3.27 applies.

Now consider any other variable y in D(u,w). Such a variable must occur in C. We apply
condition (i) of Definition 3.27, using the identity substitution for σ and—if y occurs in s or
s′—using (O5).

Lemma 3.40. Clausify can be justified as a simplification rule by simple clause redundancy
when σ is the identity for all variables other than x and y. Moreover, it can even be applied
when its eligibility condition does not hold.

Proof. By condition 1 of Definition 3.28, using the fact that |=oλ interprets Booleans.

Lemma 3.41. FalseElim can be justified as a simplification rule by simple clause redun-
dancy when σ is the identity. Moreover, it can even be applied when its eligibility condition
does not hold.

Proof. By condition 1 of Definition 3.28, using the fact that |=oλ interprets Booleans.

Lemma 3.42. BoolHoist and LoobHoist can be justified to be applied together as a
simplification rule by simple clause redundancy when σ is the identity. Moreover, they can
even be applied when their eligibility condition does not hold.
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Proof. By condition 1 of Definition 3.28, using the fact that |=oλ interprets Booleans.

The following two rules normalize negative literals with ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ into positive literals.

C ′ ∨ s ̸≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ [[S]]
NotTrue

C ′ ∨ s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ [[S]]

C ′ ∨ s ̸≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ [[S]]
NotFalse

C ′ ∨ s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ [[S]]

Lemma 3.43. NotTrue and NotFalse can be justified as simplification rules by simple
clause redundancy.

Proof. By condition 1 of Definition 3.28, using the fact that |=oλ interprets Booleans.

The following simplification rule, Unif, allows us to run a unification procedure to
remove the constraints of a clause.

C[[S]]
Unif

Cσ1 · · · Cσn

with the following side conditions:

1. {σ1, . . . , σn} is a complete set of unifiers for S;
2. C[[S]] ⊐ Cσi for all i.

Lemma 3.44. Unif can be justified by simple clause redundancy.

Proof. Let Cθ ∈ Gnd(C[[S]]). By condition 1 of Unif and Definition 3.13, there must exist
an index i and a substitution ρ such that zσiρ = zθ for all z in C[[S]]. We apply condition 2
of Definition 3.28. We use Cσi for D and ρ for ρ. Condition 2a follows from the fact that
zσiρ = zθ for all z in C[[S]]. Condition 2b follows from condition 2 of Unif.

For condition 2c, we must show that the θ-instance of C[[S]] trusts the ρ-instance of
Cσi. We will use condition (i) of trust. Let L ∈ Cσi. Let K be a literal in C such that
Kσi = L. We use σi for σ. Then we have zθ = zσiρ = zσρ for all variables z in C. Moreover,
Kσ = Kσi = L implies L ⪯ Kσ.

The following rule is inspired by one of Leo-II’s extensionality rules [9]:

C︷ ︸︸ ︷
C ′ ∨ s ̸≈ s′ [[S]]

NegExt
C ′ ∨ s diff⟨τ, υ⟩(s, s′) ̸≈ s′ diff⟨τ, υ⟩(s, s′) [[S]]

Lemma 3.45. NegExt can be justified by simple clause redundancy.

Proof. Let Cθ be a ground instance of C[[S]]. We apply condition 1 of Definition 3.28, using
I = {∗}, D∗ = C ′ ∨ s diff⟨τ, υ⟩(s, s′) ̸≈ s′ diff⟨τ, υ⟩(s, s′), T∗ = S, and ρ∗ = θ. Condition 1a
follows from the argument congruence property of |=oλ. Condition 1b follows from (O5).
For condition 1c, consider a variable y in C. We apply condition (i) of Definition 3.27, using
the identity substitution for σ and (O5).
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3.9. Examples. In this subsection, we illustrate the various rules of our calculus on concrete
examples. For better readability, we use nominal λ notation.

Example 3.46 (Selection of Negated Predicates). This example demonstrates the value
of allowing selection of literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Although the original λ-superposition
calculus was claimed to support selection of such literals, its completeness proof was flawed
in this respect [5, 25].

Consider the following clause set:

(1) p a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(2) q b ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(3) r c ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(4) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

Let us first explore what happens without literal selection. Due to the variables in (4), all of
the literals in (4) are incomparable w.r.t. any term order. So, since none of the literals is
selected, there are three possible Sup inferences: (1) into (4), (2) into (4), and (3) into (4).
After applying FalseElim to their conclusions, we obtain:

(5) q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(6) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

For each of these clauses, we can again apply a Sup inference using (1), (2), or (3), in two
different ways each. After applying FalseElim to their conclusions, we obtain three more
clauses: p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. From each of these clauses, we can then derive
the empty clause by another Sup and FalseElim inference. So, without literal selection,
depending on the prover’s heuristics, a prover might in the worst case need to perform
3 + 3 · 2 + 1 = 10 Sup inferences to derive the empty clause.

Now, let us consider the same initial clause set but we select exactly one literal whenever
possible. In (4), we can select one of the literals, say the first one. Then there is only one
possible Sup inference: (1) into (4), yielding (5) after applying FalseElim. In (5), we can
again select the first literal. Again, only one Sup inference is possible, yielding r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
after applying FalseElim. Another Sup and another FalseElim inference yield the empty
clause. Overall, there is a unique derivation of the empty clause, consisting of only three
Sup inferences.

Example 3.47 (Simplification of Functional Literals). Consider the following clauses, where
f and g are constants of type ι → ι.

(1) f ≈ g

(2) f ̸≈ g

A Sup inference from (1) into (2) is not possible because the terms are functional. Instead,
we can apply ArgCong and NegExt to derive the following clauses:

(3) f x ≈ g x (by ArgCong from (1))

(4) f diff(f, g) ̸≈ g diff(f, g) (by NegExt from (2))
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Both ArgCong and NegExt are simplification rules, so we can delete (1) and (2) after
deriving (3) and (4). Now, a Sup inference from (3) into (4) and a EqRes inference yield
the empty clause.

In contrast, the original superposition calculus requires both the Sup inference from (1)
into (2) and also a derivation similar to the one above. Moreover, its redundancy criterion
does not allow us to delete (1) and (2). This amounts to doubling the number of clauses
and inferences—even more if f and g had more than one argument.

Example 3.48 (Extensionality Reasoning). Consider the following clauses:

(1) map (λu. sqrt (add u 1)) x ̸≈ map (λu. sqrt (add 1 u)) x

(2) add u v ≈ add v u

For better readability, we omit type arguments and use subscripts for the parameters of diff.
Using our calculus, we derive the following clauses:

(3) sqrt (add (diffλu. sqrt (add u 1),z) 1) ̸≈ z (diffλu. sqrt (add u 1),z) ∨
map z x ̸≈ map (λu. sqrt (add 1 u)) x (by Ext from (1))

(4) sqrt (add diffλu. sqrt (add u 1),λu. sqrt (add 1 u) 1) ̸≈
sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) (by EqRes from (3))

(5) sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) ̸≈
sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) (by Sup from (2), (4))

(6) ⊥ (by EqRes from (5))

While such a derivation is also possible in the original λ-superposition calculus, the term
orders of the original calculus were not able to compare the literals of the extensionality
axiom

y diffy,z ̸≈ z diffy,z ∨ y ≈ z

As a result, the extensionality axiom leads to an explosion of inferences. Our calculus avoids
this problem by ensuring that the positive literal of the extensionality axiom is maximal, via
the ordering property (O5). By replacing the extensionality axiom with the Ext rule, we
avoid in addition Sup inferences into functional terms, and it strengthens our redundancy
criterion.

Example 3.49 (Delaying Unification Using Constraints). Consider the following clause set:

(1) map (λu. y (s u)) a ̸≈ map (λu. z (s (y u))) a ∨ lt (y zero) (s (s (s zero))) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(2) lt x x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

We assume that the first literal of (1) is selected. Using a CSUupto function that implements
Huet’s preunification procedure, we can derive the following clauses:

(3) lt (y zero) (s (s (s zero))) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ [[λu. y (s u) ≡ λu. z (s (y u))]] (by EqRes from (1))

(4) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (by Sup from (3),(2))

(5) ⊥ (by Clausify from (4))

If our calculus did not support constraints, we would have to solve the unification problem
in (3) first, which yields an infinite number of solutions among which the simplest ones are
dead ends.
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Example 3.50 (Universal Quantification). Consider the following clause set:

(1) (λx. p x) ≈ (λx. ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(2) p a ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
Here, clause (1) encodes the universal quantification ∀x. p x. We can derive a contradiction
as follows:

(3) p x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (by ArgCong from (1))

(4) ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by Sup from (2), (3))

(5) ⊥ (by FalseElim from (4))

Since the ArgCong inference creating clause (3) can be used as a simplification rule by
Lemma 3.39, clause (1) can be deleted when creating clause (3). So we do not need to apply
any Ext inferences into clause (1). Except for inferences into (1) and except for a Diff
inference, the inferences required in the derivation above are the only ones possible. In this
sense, the encoding of the universal quantifier using λ-abstractions has no overhead.

Example 3.51 (Existential Quantification). Negated universal quantification or existential
quantification can be dealt with similarly. Consider the following clause set:

(1) (λx. p x) ̸≈ (λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(2) p x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
We can derive a contradiction as follows:

(3) p diff⟨ι, o⟩(λx. p x, λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) ̸≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (by NegExt from (1))

(4) p diff⟨ι, o⟩(λx. p x, λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by NotTrue from (3))

(5) ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by Sup from (2), (4))

(6) ⊥ (by FalseElim from (5))

Again, we can delete (1) when creating (3), preventing any Ext inferences from (1). Moreover,
we can delete (3) when creating (4). As a result, encoding existential quantification using
λ-abstraction does not have overhead either.

Example 3.52. This example illustrates why condition (ii) of our definition of trust
(Definition 3.27) must require the variable not to occur in parameters. Consider the
following clause set:

(1) b ≈ a

(2) (λx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x y ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ a)) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(3) (λx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ a)) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

Note that the clauses (λx. . . . ) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) can be read as ∃x. . . . and that (3) is an instance
of (2). Clauses (1) and (3) alone are unsatisfiable because (1) ensures that the right side of
the disjunction p x b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ a in (3) is false, and since (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x b) is clearly false, clause
(3) is false.

For the following derivation, we assume b ≻ a. Applying NegExt to (2) and (3) followed
by NotFalse yields

(4) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(5) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
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For better readability, we omit the type arguments and write the parameters of diff as
subscripts. Applying Clausify several times yields

(6) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ̸≈ a

(8) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(9) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ b ̸≈ a

By positive simplify-reflect on (9), followed by Demod from (1) into the resulting clause,
we obtain the clause

(10) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

In this derivation, (2), (3), (4), (5), and (9) can be deleted because NegExt, NotFalse,
Clausify, Demod, and positive simplify-reflect can be applied as simplification rules.

To illustrate why condition (ii) does not apply to variables that occur in parameters,
we also remove (8), which is against the redundancy criterion but would be justified by
Subsumption of (8) by (6) if condition (ii) ignored parameters. The following clauses
remain:

(1) b ≈ a

(6) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ̸≈ a

(10) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

Assuming that the negative literal in (7) is selected and that b ≻ a, no core inference rule
other than Diff applies. Due to the explosive nature of Diff, it is difficult to predict whether
Diff inferences lead anywhere, but we conjecture that this is indeed a counterexample to a
redundancy criterion that ignores parameters.

An alternative approach with a stronger redundancy criterion that does not need to
treat parameters specially may be to enforce superposition inferences into variables that have
other occurrences inside parameters. In the example above, this would entail a superposition
inference from (1) into the variable y in the second literal of (7), which would indeed lead to
a refutation.

4. Soundness

To prove our calculus sound, we need a substitution lemma for terms and clauses, which our
logic fulfills:

Lemma 4.1 (Substitution Lemma). Let θ be a substitution, and let t be a term of type τ .
For any proper interpretation I = (Ity, J,L) and any valuation ξ,

JtθKξI = JtKξ
′

I

where the modified valuation ξ′ is defined by ξ′ty(α) = JαθKξtyIty
for type variables α and

ξ′te(x) = JxθKξI for term variables x.
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Proof. By induction on the size of the term t.

Case t = x⟨τ⟩:

JtθKξI = JxθKξI
= ξ′(x) (by the definition of interpretation)

= JxKξ
′

I (since x is mapped to JxθKξI)
= JtKξ

′

I

Case t = f⟨τ̄⟩(ū):

JtθKξI = Jf⟨τ̄ θ⟩(ūθ)KξI
= J (f, Jτ̄ θKξtyIty

, JūθKξI) (by definition)

= J (f, Jτ̄K
ξ′ty
Ity
, JūKξ

′

I ) (by induction hypothesis)

= Jf⟨τ̄⟩(ū)Kξ
′

I (by definition)

= JtKξ
′

I

Case t = s v:

JtθKξI = Jsθ vθKξI
= JsθKξI (JvθK

ξ
I) (by definition)

= JsKξ
′

I (JvKξ
′

I ) (by induction hypothesis)

= Js vKξ
′

I (by definition)

= JtKξ
′

I

Case t = λ⟨τ⟩ u:

JtθKξI(a) = Jλ⟨τθ⟩ uθKξI(a)
= Juθ{0 7→ x}K(ξty,ξte[x 7→a])

I (since I is proper; for some fresh variable x)

= Ju{0 7→ x}θK(ξty,ξte[x 7→a])
I

= Ju{0 7→ x}K(ξ
′
ty,ξ

′
te[x 7→a])

I (by induction hypothesis)

= Jλ⟨τ⟩ uKξ
′

I (a) (since I is proper)

= JtKξ
′

I (a)

Lemma 4.2 (Substitution Lemma for Clauses). Let θ be a substitution, and let C be a
clause. For any proper interpretation I = (Ity, J,L) and any valuation ξ, Cθ is true w.r.t. I
and ξ if and only if C is true w.r.t. I and ξ′, where the modified valuation ξ′ is defined by
ξ′ty(α) = JαθKξtyIty

for type variables α and ξ′te(x) = JxθKξI for term variables x.

Proof. By definition of the semantics of clauses, Cθ is true w.r.t. I and ξ if and only if one
of its literals is true w.r.t. I and ξ. By definition of the semantics of literals, a positive literal
sθ ≈ tθ (resp. negative literal sθ ̸≈ tθ) of Cθ is true w.r.t. I and ξ if and only if JsθKξI and
JtθKξI are equal (resp. different). By Lemma 4.1, JsθKξI and JtθKξI are equal (resp. different) if
and only if JsKξ

′

I and JtKξ
′

I are equal (resp. different)—i.e., if and only if a literal s ≈ t (resp.
s ̸≈ t) in C is true w.r.t. I and ξ′. This holds if and only if C is true w.r.t. I and ξ′.
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Theorem 4.3. All core inference rules are sound w.r.t. |≈ (Definition 2.1). All core inference
rules except for Ext, FluidExt, and Diff are also sound w.r.t. |=. This holds even when
ignoring order, selection, and eligibility conditions.

Proof. We fix an inference and an interpretation I that is a model of the premises. For Ext,
FluidExt, and Diff inferences, we assume that I is diff-aware. We need to show that it
is also a model of the conclusion. By Lemma 4.2, I is a model of the σ-instances of the
premises as well, where σ is the substitution used for the inference. From the semantics of
our logic, it is easy to see that congruence holds at green positions and at the left subterm
of an application. To show that I is a model of the conclusion, it suffices to show that the
conclusion is true under I, ξ for all valuations ξ.

For most rules, it suffices to make distinctions on the truth under I, ξ of the literals
of the σ-instances of the premises, to consider the conditions that σ is a unifier where
applicable, and to apply congruence. For BoolHoist, LoobHoist, FalseElim, Clausify,
FluidBoolHoist, FluidLoobHoist, we also use the fact that I interprets logical symbols
correctly. For Ext, FluidExt, andDiff, we also use the assumption that I is diff-aware.

5. Refutational Completeness

Superposition is a saturation-based calculus. Provers that implement it start from an initial
clause set N0 and repeatedly add new clauses by performing inferences or remove clauses by
determining them to be redundant. In the limit, this process results in a (possibly infinite)
set N∞ of persistent clauses. Assume that inferences are performed in a fair fashion; i.e., no
nonredundant inference is postponed forever. Then the set N∞ is saturated, meaning that
all inferences are redundant (for example because their conclusion is in the set). Refutational
completeness is the property that if N∞ does not contain the empty clause, N0 has a model.
Since refutational completeness is the only kind of completeness that interests us in this
article, we will also refer to it as “completeness.”

Due the role of constraints and parameters in our calculus, our completeness result,
stated in Corollary 5.96, makes two additional assumptions: It assumes that the clauses in
N0 have no constraints and do not contain constants with parameters. And, instead of the
usual assumption that N∞ does not contain the empty clause, we assume that N∞ does not
contain an empty clause with satisfiable constraints.

5.1. Proof Outline. The idea of superposition completeness proofs in general is the
following: We assume that N∞ does not contain the empty clause. We construct a term
rewrite system derived from the ground instances of N∞. We view this system as an
interpretation I and show that it is a model of the ground instances and thus of N∞ itself.
Since only redundant clauses are removed during saturation, I must also be a model of N0.

Completeness proofs of constrained superposition calculi, including our the completeness
proof of our calculus, must proceed differently. The constraints prevent us from showing
I to be a model of all ground instances of N∞. Instead, we restrict ourselves to proving
that I is a model of the variable-irreducible ground instances of N∞. Roughly speaking, a
variable-irreducible ground instance is one where the terms used to instantiate variables are
irreducible w.r.t. the constructed term rewrite system. The notion of redundancy must be
based on the notion of variable-irreducible ground instances as well, so that if I is a model of
the variable-irreducible ground instances of N∞, it is also a model of the variable-irreducible
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H
higher-order

constrained clauses

G
higher-order closures

PG
partly substituted

higher-order closures

IPG
indexed partly substituted

higher-order closures

PF
partly substituted

ground first-order closures

F
ground first-order clauses

G

P

J

F

T

x (diff⟨α, α⟩(g⟨α⟩, h⟨α⟩) z ≈ c
[[x (g⟨α⟩y) ≡ x (g⟨α⟩a⟨α⟩), z ≡ λ⟨α⟩k⟨α⟩0 y]]

x (diff⟨ι, ι⟩(g⟨α⟩, h⟨α⟩))z ≈ c
· {α 7→ ι, x 7→ f⟨ι⟩, y 7→ a⟨ι⟩, z 7→ λ⟨ι⟩k⟨ι⟩0 a⟨ι⟩}

f⟨ι⟩ (diff⟨ι, ι⟩(g⟨ι⟩, h⟨ι⟩)) (λ⟨ι⟩k⟨ι⟩0 z1.2) ≈ c
· {y1 7→ a⟨ι⟩, z1.2 7→ a⟨ι⟩}

f⟨ι⟩ (diffι,ι
(g⟨ι⟩,h⟨ι⟩)) (λ⟨ι⟩k⟨ι⟩0 z1.2) ≈ c

· {y1 7→ a⟨ι⟩, z1.2 7→ a⟨ι⟩}

fι (diffι,ι
(g⟨ι⟩,h⟨ι⟩), funλ⟨ι⟩k⟨ι⟩0 □(z1.2)) ≈ c

· {y1 7→ aι0, z1.2 7→ aι0}

fι1 (diff
ι,ι
(g⟨ι⟩,h⟨ι⟩),0, funλ⟨ι⟩k⟨ι⟩0 □(a

ι
0)) ≈ c

G

P

J

F

T

Figure 1: Overview of the levels

ground instances of N0. Assuming that the initial clauses N0 do not have constraints, I is
then a model of all ground instances of N0 because every ground instance has a corresponding
variable-irreducible instance with the same truth value in I. It follows that I is a model of
N0.

To separate concerns, our proof is structured as a sequence of six levels, most of which
have their own logic, calculus, redundancy criterion, and completeness property. The levels
are called H, G, PG, IPG, PF, and F. They are connected by functions encoding clauses
from one level to the next.

The level H is the level of higher-order constrained clauses, using the logic described in
Section 2 and the calculus described in Section 3. Our ultimate goal is to prove completeness
on this level.

The level G is the level of higher-order closures, where a closure C · θ is a pair consisting
of a clause C and a grounding substitution θ. The function G maps each clause from level
H to a corresponding set of closures on level G using all possible grounding substitutions.

The level PG is the level of partly substituted higher-order closures. It is the fragment of
G that contains no type variables and no functional variables. The map P encodes closures
from G into level PG by applying a carefully crafted substitution to functional variables.

The level IPG is the level of indexed partly substituted closures. It modifies the signature
of the previous levels by replacing each symbol with parameters f : Πᾱm. τ̄n ⇒ τ by a
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collection of symbols f ῡmūn
: τ for each tuple of types ῡm and each tuple of ground terms

ūn : τ̄n. The map J encodes closures from PG into IPG by moving type arguments into the
superscript indices ῡm parameters into the subscript indices ūn.

The level PF is the level of partly substituted ground first-order closures. Its logic is
the one described in Section 3.7 except with variables and closures. We extend the encoding
F (Definition 3.23) with variables, yielding an encoding from IPG into PF.

The level F is the level of first-order clauses. It uses the same logic as PF but uses
ground clauses instead of closures. The map T connects the two by mapping a closure C · θ
to the clause Cθ.

Figure 1 gives an overview of the hierarchy of levels and an example of a clause instance
across the levels.

5.2. Logics and Encodings. In our completeness proof, we use two higher-order signatures
and one first-order signature.

Let ΣH be the higher-order signature used by the calculus described in Section 3. It is
required to contain a symbol diff : Πα, β. (α → β, α → β) ⇒ α

Let ΣI be the signature obtained from ΣH in the following way: We replace each
constant with parameters f : Πᾱm. τ̄n ⇒ τ in ΣH with a family of constants f ῡm

t̄n
: τ , indexed

by all possible ground types ῡm and ground terms t̄n ∈ Tground(ΣH) of type τ̄n{ᾱm 7→ ῡm}.
Constants without parameters (even those with type arguments) are left as they are.

In some contexts, it is more convenient to use terms from Tground(ΣI) instead of

Tground(ΣH) in the subscripts ti of the constants f ῡm
t̄n

. We follow this convention:

Convention 5.1. In the subscripts ti of constants f
ῡm
t̄n

∈ ΣI, we identify each term of the

form f⟨ῡm⟩(t̄n) ∈ Tground(ΣH) with the term f ῡm
t̄n

∈ Tground(ΣI), whenever n > 0.

Similarly, the first-order signatures F (ΣI) and F (ΣH) as defined in Section 3.7 are
almost identical, the only difference being that the subscripts t of the symbols funt ∈ F (ΣH)
may contain symbols with parameters, whereas the subscripts t of the symbols funt ∈ F (ΣI)
may not. To repair this mismatch, we adopt the following convention using the obvious
correspondence between the symbols in F (ΣH) and F (ΣI):

Convention 5.2. In the subscripts of constants funt in F (ΣH) and F (ΣI), we identify each
term of the form f⟨ῡm⟩(t̄n) ∈ Tground(ΣH) with the term f ῡm

t̄n
∈ Tground(ΣI), whenever n > 0.

Using this identification, we can consider the first-order signatures F (ΣH) and F (ΣI) to be
identical.

Our completeness proof uses two sets of variables. Let VH be the set of variables used
by the calculus described in Section 3. Based on VH, we define the variables VPG of the PG
level as

VPG = VH ∪ {yp⟨τ⟩ | y ∈ VH, p a list of natural numbers, τ a nonfunctional type}

The table below summarizes our completeness proof’s six levels, each with a set of terms
and a set of clauses. We write TX for the set of terms and CX for the set of clauses of a given
level X:
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Level Terms Clauses
F ground first-order terms over F (ΣI) clauses over TF

PF first-order terms over F (ΣI) and VPG that do
not contain variables whose type is of the form
τ → υ

closures over TPF

IPG {t ∈ T (ΣI,VPG) | t contains neither type vari-
ables nor functional variables}

closures over TIPG

PG {t ∈ T (ΣH,VPG) | t contains neither type vari-
ables nor functional variables}

closures over TPG

G T (ΣH,VH) closures over TG

H T (ΣH,VH) constrained clauses over TH

5.2.1. First-Order Encodings. The transformation T from CPF to CF is simply defined as
T (C · θ) = Cθ. We also define a bijective encoding from TIPG into TPF and from CIPG into
CPF. It is very similar to the encoding F : Tground(ΣH) → TF defined in Definition 3.23, but
also encodes variables and does not encode parameters. We reuse the name F for this new
encoding. Potential for confusion is minimal because the two encodings coincide on the
values that are in the domain of both.

Definition 5.3 (First-Order Encoding F ). We define F : TIPG → TPF recursively as follows:
If t is functional, then let t′ be the expression obtained by replacing each outermost proper
yellow subterm in t by the placeholder symbol □, and let F (t) = funt′(F (s̄n)), where s̄n
are the replaced subterms in order of occurrence. If t is a variable x, we define F (t) = x.
Otherwise, t is of the form f⟨τ̄⟩ t̄m and we define F (t) = f τ̄ (F (t̄1), . . . ,F (t̄m)).

Applied to a closure C · θ ∈ CIPG, the function F is defined by F(C · θ) = F(C) · F(θ),
where F maps each side of each literal and each term in a substitution individually.

Lemma 5.4. The map F is a bijection between TIPG and TPF and between CIPG and CPF.

Proof. Injectivity of F can be shown by structural induction. For surjectivity, let t ∈ TPF.
We must show that there exists some s ∈ TIPG such that F (s) = t. We proceed by induction
on t.

If t is of the form funt′(t̄n), we use the induction hypothesis to derive the existence
of some s̄n ∈ TIPG such that F (s̄n) = t̄n. Let s be the term resulting from replacing the
placeholder symbols □ in t′ by s̄n in order of occurrence. Then F (s) = t.

If t is a variable x, by definition of TPF, t’s type is not of the form τ → υ. So, we can
set s = x ∈ TIPG. Then F (s) = t.

If t = f τ̄ (t̄n), where f τ̄ is not a fun symbol, by the induction hypothesis there exist s̄n
such that F (s̄n) = t̄n and set s = f⟨τ̄⟩ s̄n. Then F (s) = t.

It follows that F is also a bijection between CIPG and CPF.

Lemma 5.5. For all terms t ∈ TIPG, all clauses over TIPG, and all grounding substitutions
θ, we have F (t)F (θ) = F (tθ) and F (C)F (θ) = F (Cθ).

Proof. Since F maps each side of each literal individually, it suffices to show that F (t)F (θ) =
F (tθ) for all t ∈ TIPG. We proceed by structural induction on t.

If t is a variable, the claim is trivial.
If t is nonfunctional and headed by a symbol, the claim follows from the induction

hypothesis.
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Finally, we consider the case where t is functional. Let t′ be the expression obtained by
replacing each outermost proper yellow subterm in t by the placeholder symbol □, and let
s̄n be the replaced subterms in order of occurrence. Since all variables in t are nonfunctional,
they must be located in a proper yellow subterm of t, and thus replacing the outermost
proper yellow subterm in tθ by the placeholder symbol □ will result in t′ as well. So, using
the induction hypothesis, F (t)F (θ) = funt′(F (s̄n)F (θ)) = funt′(F (s̄nθ)) = F (tθ).

Lemma 5.6. A term s ∈ TIPG is a yellow subterm of t ∈ TIPG if and only if F (s) is a
subterm of F (t).

Proof. By induction using the definition of F .

Lemma 5.7. A term s ∈ TIPG is a green subterm of t ∈ TIPG if and only if F (s) is a green
subterm (as defined in Section 3.7) of F (t).

Proof. By induction using the definition of F .

5.2.2. Indexing of Parameters.

Definition 5.8 (Indexing of Parameters). The transformation J translates from TPG to
TIPG by encoding any occurrence of a constant with parameters f⟨ῡ⟩(ū) as f ῡūθ, where θ
denotes the substitution of the corresponding closure. Formally:

Jθ(x) = x

Jθ(λ t) = λ Jθ(t)
Jθ(f⟨ῡ⟩ s̄) = f⟨ῡ⟩ Jθ(s̄)

Jθ(f⟨ῡ⟩ (ūk) s̄) = f ῡūkθ
Jθ(s̄) if k > 0

Jθ(m s̄) = m Jθ(s̄)

We extend Jθ to clauses by mapping each side of each literal individually. If t is a ground
term, the given substitution is irrelevant, so we omit the subscript and simply write J (t).
We extend J to grounding substitutions by defining J (θ) as x 7→ J (xθ). The transformation
J w.r.t. a closure C · θ is defined as J (C · θ) = Jθ(C) · J (θ).

Lemma 5.9. For all t ∈ TPG, all clauses C over TPG, and all grounding substitutions θ, we
have J (tθ) = Jθ(t)J (θ) and J (Cθ) = Jθ(C)J (θ).

Proof. Since J maps each side of each literal individually, it suffices to show that J (tθ) =
Jθ(t)J (θ). We prove this by induction on the structure of t. If t is a variable, the claim is
trivial. For all other cases, the claim follows from the definition of Jθ and the induction
hypothesis.

Lemma 5.10. If Jθ(t)J (θ) = Jθ(t′)J (θ), then tθ = t′θ.

Proof. This becomes clear when viewing J as composed of two operations: First, we apply
the substitution to all variables in parameters. Second, we move type arguments and
parameters into indices. Both parts clearly fulfill this lemma’s statement.

Lemma 5.11. Let t ∈ Tground(ΣH), and let C be a clause over Tground(ΣH). Then F (J (t)) =
F (t) and F (J (C)) = F (C).
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Proof. For t, the claim follows directly from the definitions of J (Definition 5.8) and F
(Definitions 3.23 and 5.3), relying on the identification of funt and funJ (t) (Convention 5.2).
For C, the claim holds because J and F map each side of each literal individually.

5.2.3. Partial Substitution. Let θ be a grounding substitution from VH to Tground(ΣH).
We define a substitution p(θ), mapping from VH to T (ΣH,VPG), and a substitution q(θ),
mapping from VPG to Tground(ΣH), as follows. For each type variable α, let αp(θ) = αθ.
For each variable y ∈ VH, let yp(θ) be the term resulting from replacing each nonfunctional
yellow subterm at a yellow position p in yθ by yp ∈ VPG. We call these variables yp the
variables introduced by p(θ). If a nonfunctional yellow subterm is contained inside another
nonfunctional yellow subterm, the outermost nonfunctional yellow subterm is replaced by a
variable. The substitution q(θ) is defined as ypq(θ) = yθ|p for all variables yp introduced by
p(θ), and for all other variables y ∈ VPG, we set yq(θ) to be some arbitrary ground term
that is independent of θ.

Finally, we define

P : CG → CPG, C · θ 7→ Cp(θ) · q(θ)
For example, if yθ = λ f (0 (g a)), then yp(θ) = λ f (0 y1.1.1) and y1.1.1q(θ) = g a.
Technically, this definition of p, q, and P depends on the choice of a βη-normalizer ↓βη

because it relies on yellow positions. However, this choice affects the resulting terms and
clauses only up to renaming of variables, and our proofs work for any choice of ↓βη as long
as we use the same fixed ↓βη for p, q, and P .

Lemma 5.12. Let θ be a grounding substitution. Then p(θ)q(θ) = θ.

Proof. For type variables α, we have αp(θ)q(θ) = αθ by definition of p. We must show that
yp(θ)q(θ) = yθ for all variables y ∈ VH. By definition of p, yp(θ) is obtained from yθ by
replacing each nonfunctional yellow subterm at a yellow position p with yp. By definition of
q, we have ypq(θ) = yθ|p for all such positions p. Therefore, when we apply q(θ) to yp(θ),
we replace each yp with the original subterm yθ|p, effectively reconstructing yθ.

Lemma 5.13. Let θ be a substitution from VH to Tground(ΣH) and ρ be a substitution from
VPG to Tground(ΣH). Then p(p(θ)ρ) = p(θ).

Proof. Let y ∈ VH. By definition of p, yp(θ) is obtained from yθ by replacing each non-
functional yellow subterm at a yellow position p with yp. Now, consider yp(θ)ρ. Since ρ is
grounding, it will replace each yp with a ground term. To obtain yp(p(θ)ρ), we take yp(θ)ρ
and again replace each nonfunctional yellow subterm at a yellow position p with yp. These
positions and the resulting structure will be identical to those in yp(θ) because the ground
terms introduced by ρ do not affect the overall structure of yellow positions. Therefore,
yp(p(θ)ρ) = yp(θ) for each variable y ∈ VH.

For type variables α, we have αp(θ) = αθ = αp(p(θ)ρ). Thus, we can conclude that
p(p(θ)ρ) = p(θ).

Lemma 5.14. Let θ be a substitution from VH to Tground(ΣH). Let ρ be a substitution from
VPG to Tground(ΣH) such that yρ = yq(θ) for all y not introduced by p(θ). Then q(p(θ)ρ) = ρ.

Proof. Let yp be a variable introduced by p(p(θ)ρ). By definition of q, we have ypq(p(θ)ρ) =
yp(θ)ρ|p. Moreover, since yp(θ)|p = yp, we have yp(θ)ρ|p = ypρ. So ypq(p(θ)ρ) = ypρ.
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Let y be a variable not introduced by p(p(θ)ρ). It remains to show that yq(p(θ)ρ) =
yρ. By Lemma 5.13, the variables introduced by p(θ) are the same as the variables
introduced by p(p(θ)ρ). So y is not introduced by p(θ) either. So, by definition of q, we have
yq(p(θ)ρ) = yq(θ), and with the assumption of this lemma that yρ = yq(θ), we conclude
that yq(p(θ)ρ) = yρ.

Lemma 5.15. Let θ be a grounding substitution. For each variable y ∈ VH, yp(θ) is the
most general term t (unique up to renaming of variables) with the following properties:

1. there exists a substitution ρ such that tρ = yθ;
2. t contains no type variables and no functional variables.

Proof. Let y ∈ VH. By Lemma 5.12, yp(θ) satisfies property 1, and by definition of p, it
satisfies property 2.

To show that yp(θ) is the most general such term, let s be any term satisfying properties
1 and 2, and let σ be a substitution such that sσ = yθ. We must show there exists a
substitution π such that yp(θ)π = s.

Since s contains no type variables and no functional variables, it is easy to see from the
definition of orange subterms that for any orange position p of sσ, either p is also an orange
position of s or there exists a proper prefix q of p such that q is an orange position of s and
s|q is a nonfunctional variable. If there exists such a prefix q, then q must be a nonfunctional
yellow position of sσ since σ cannot introduce free De Bruijn indices at that position, and
thus p cannot be an outermost nonfunctional yellow subterm of sσ. From these observations,
we conclude that any outermost nonfunctional yellow position p of sσ must be an orange
position of s. In fact, since substituting nonfunctional variables cannot eliminate De Bruijn
indices, any outermost nonfunctional yellow position of sσ must be a yellow position of s.

Let π map each variable yp introduced by p(θ) to the corresponding term in s at position
p. This term exists because p is, by definition of p(θ), an outermost nonfunctional yellow
position of yθ = sσ and thus, by the above, a yellow position of s. Then yp(θ)π = s by
construction, showing that yp(θ) is indeed most general.

Lemma 5.16. Let σ be a substitution, and let ζ be a grounding substitution. Then there
exists a substitution π such that σp(ζ) = p(σζ)π and q(σζ) = πq(ζ).

Proof. Let x ∈ VH. By Lemma 5.12, xσp(ζ)q(ζ) = xσζ. Moreover, xσp(ζ) contains only
nonfunctional variables. By Lemma 5.15, since xp(σζ) is the most general term with these
properties, there must exist a substitution π such that xσp(ζ) = xp(σζ)π. Since the variables
in x1p(σζ) and x2p(σζ) are disjoint for x1 ̸= x2, we can construct a single substitution π
that satisfies σp(ζ) = p(σζ)π, proving the first part of the lemma.

For this construction of π, only the values of π for variables introduced by p(σζ) are
relevant. Thus, we can define yπ = yq(σζ) for all other variables y. Then yq(σζ) = yπq(ζ)
for all variables y not introduced by p(σζ).

Finally, let yp be a variable introduced by p(σζ). By Lemma 5.12 and the above,
σζ = σp(ζ)q(ζ) = p(σζ)πq(ζ). By Lemma 5.14, ypq(σζ) = ypπq(ζ) for all variables yp
introduced by p(σζ), completing the proof of the second part of the lemma.

The redundancy notions of the H level use the map F , defined in Section 3.7. It is
closely related to the maps defined above.

Lemma 5.17. For all clauses C and grounding substitutions θ,

F (Cθ) = T (F (J (P (C · θ))))
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Proof. All of the maps T , F , J , and P map each literal and each side of a literal individually.
So we can focus on one side s of some literal in C, and we must show that

F (sθ) = F (Jq(θ)(sp(θ)))F (J (q(θ))) (∗)
By Lemma 5.11,

F (t) = F (J (t))
for all ground terms t ∈ Tground(ΣH). By Lemma 5.9,

Jρ(t)J (ρ) = J (tρ)
for all t ∈ TPG and grounding substitutions ρ. Also, by Lemma 5.5,

F (t)F (ρ) = F (tρ)

for all t ∈ TIPG and grounding substitutions ρ. From the last three equations, we obtain that

F (tρ) = F (Jρ(t))F (J (ρ))
for all t ∈ TPG and grounding substitutions ρ.

Using the term s and the substitution θ introduced at the beginning of this proof, take
t to be sp(θ) and ρ to be q(θ). We then have

F (sp(θ)q(θ)) = F (Jq(θ)(sp(θ)))F (J (q(θ)))

By Lemma 5.12, this implies (∗).

5.2.4. Grounding. The terms of level H are T (ΣH). Its clauses CH are constrained clauses
over these terms. We define the function G : CH → CG by

G(C[[S]]) = {C · θ | θ is grounding and Sθ is true}
for each constrained clause C[[S]] ∈ CH.

5.3. Calculi. In this section, we define the calculi PFInf , IPGInf , and PGInf , for the
respective levels PF, IPG, and PG. Each of these calculi is parameterized by a relation ≻
on ground terms, ground clauses, and closures and by a selection function sel . Based on
these parameters, we define the notion of eligibility. The specific requirements on ≻ depend
on the calculus and are given in the corresponding subsection below. For each of the levels,
we define selection functions and the notion of eligibility as follows:

Definition 5.18 (Selection Function). For each level X ∈ {PF, IPG,PG}, we define a
selection function sel to be a function mapping each closure C · θ ∈ CX to a subset of C’s
literals. We call those literals selected. Only negative literals and literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
may be selected.

Definition 5.19 (Eligibility in Closures). Let X ∈ {PF, IPG,PG}. Let C · θ ∈ CX . Given
a relation ≻ and a selection function, a literal L ∈ C is (strictly) eligible in C · θ if it is
selected in C · θ or there are no selected literals in C · θ and Lθ is (strictly) maximal in Cθ.
A position L.s.p of a closure C · θ is eligible if the literal L is of the form s ≈̇ t with sθ ≻ tθ
and L is either negative and eligible or positive and strictly eligible.

For inferences, we follow the same conventions as in Definition 3.22, but our inference
rules operate on closures instead of constrained clauses.
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5.3.1. First-Order Levels. The calculus PFInf ≻,sel is parameterized by a relation ≻ and
a selection function sel . We require that ≻ is an admissible term order for PFInf in the
following sense:

Definition 5.20. Let ≻ be a relation on ground terms, ground clauses, and closures. Such
a relation ≻ is an admissible term order for PFInf if it fulfills the following properties:

(O1)PF the relation ≻ on ground terms is a well-founded total order;
(O2)PF ground compatibility with contexts: if s′ ≻ s, then s′[t] ≻ s[t];
(O3)PF ground subterm property: t[s] ≻ s for ground terms s and t;
(O4)PF u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)PF F (u) ≻ F (u diffτ,υ

s,t ) for all s, t, u : τ → υ ∈ Tground(ΣI);
(O6)PF the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];
(O7)PF for closures C · θ and D · ρ, we have C · θ ≻ D · ρ if and only if Cθ ≻ Dρ.

We use the notion of green subterms in first-order terms introduced in Section 3.7. We
define x(ρ ∪ θ) as xρ if x occurs in the left premise and as xθ otherwise.

D︷ ︸︸ ︷
(D′ ∨ t ≈ t′) · ρ C u · θ

PFSup
(D′ ∨ C t′ ) · (ρ ∪ θ)

C︷ ︸︸ ︷
(C ′ ∨ u ̸≈ u′) · θ

PFEqRes
C ′ · θ

C︷ ︸︸ ︷
(C ′ ∨ u′ ≈ v′ ∨ u ≈ v) · θ

PFEqFact
(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′) · θ

(C ′ ∨ s ≈ t) · θ
PFClausify

(C ′ ∨ D) · θ

C u · θ
PFBoolHoist

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) · θ
C u · θ

PFLoobHoist
(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) · θ

C︷ ︸︸ ︷
(C ′ ∨ s ≈ t) · θ

PFFalseElim
C ′ · θ
C︷ ︸︸ ︷

(C ′ ∨ F (s) ≈ F (s′)) · θ
PFArgCong

C ′ ∨ F (s diffτ,υ
u,w) ≈ F (s′ diffτ,υ

u,w) · θ

C F (u) · θ
PFExt

C F (w) ∨ F (u diffτ,υ
uθ,wρ) ̸≈ F (w diffτ,υ

uθ,wρ) · ρ

PFDiff
F (u diffτ,υ

uθ,wθ) ̸≈ F (w diffτ,υ
uθ,wθ) ∨ F (u s) ≈ F (w s) · θ

Side conditions for PFSup:

1. tρ = uθ;
2. u is not a variable;
3. u is nonfunctional;
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4. tρ ≻ t′ρ;
5. Dρ ≺ C[u]θ;
6. the position of u is eligible in C · θ;
7. t ≈ t′ is strictly eligible in D · ρ;
8. if t′ρ is Boolean, then t′ρ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

Side conditions for PFEqRes:

1. uθ = u′θ;
2. u ̸≈ u′ is eligible in C · θ.
Side conditions for PFEqFact:

1. uθ = u′θ;
2. u ≈ v · θ is maximal in C · θ;
3. there are no selected literals in C · θ;
4. uθ ≻ vθ,

Side conditions for PFClausify:

1. s ≈ t is strictly eligible in (C ′ ∨ s ≈ t) · θ;
2. The triple (s, tθ,D) has one of the following forms, where τ is an arbitrary type and u, v

are arbitrary terms:

(u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ v) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ̸≈ v)

(u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ̸≈ v) (u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ v)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

Side conditions for PFBoolHoistand PFLoobHoist:

1. u is of Boolean type
2. u is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
3. the position of u is eligible in C · θ;
4. the occurrence of u is not in a literal L with Lθ = (uθ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) or Lθ = (uθ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤).

Side conditions for PFFalseElim:

1. (s ≈ t)θ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤;
2. s ≈ t is strictly eligible in C · θ.
Side conditions for PFArgCong:

1. s is of type τ → υ;
2. u,w are ground terms of type τ → υ;
3. F (s) ≈ F (s′) is strictly eligible in C · θ.
Side conditions for PFExt:

1. the position of F (u) is eligible in C · θ;
2. the type of u is τ → υ;
3. w ∈ TIPG is a term of type τ → υ whose nonfunctional yellow subterms are different

variables and the variables in F (w) do not occur in C[F (u)].
4. uθ ≻ wρ;
5. ρ is a grounding substitution that coincides with θ on all variables in C[F (u)].
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Side conditions for PFDiff:

1. τ and υ are ground types;
2. u,w, s ∈ TIPG are terms whose nonfunctional yellow subterms are different fresh variables;
3. θ is a grounding substitution.

5.3.2. Indexed Partly Substituted Ground Higher-Order Level. The calculus IPGInf ≻,sel

is parameterized by a relation ≻ and a selection function sel . We require that ≻ is an
admissible term order for IPGInf in the following sense:

Definition 5.21. Let ≻ be a relation on Tground(ΣI), on clauses over Tground(ΣI), and on
closures CIPG. Such a relation ≻ is an admissible term order for IPGInf if it fulfills the
following properties:

(O1)IPG the relation ≻ on ground terms is a well-founded total order;
(O2)IPG ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground

terms s, s′, and t;
(O3)IPG ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4)IPG u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)IPG u ≻ u diffτ,υ

s,t for all ground terms s, t, u : τ → υ.
(O6)IPG the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];
(O7)IPG for closures C · θ and D · ρ, we have C · θ ≻ D · ρ if and only if Cθ ≻ Dρ.

The rules of IPGInf ≻,sel (abbreviated IPGInf ) are the following. We assume that for
the binary inference IPGSup, the premises do not have any variables in common, and we
define x(ρ ∪ θ) as xρ if x occurs in the left premise and as xθ otherwise.

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ · ρ C u · θ

IPGSup
D′ ∨ C t′ · (ρ ∪ θ)

with the following side conditions:

1. tρ = uθ;
2. u is not a variable;
3. u is nonfunctional;
4. tρ ≻ t′ρ;
5. Dρ ≺ C u θ;
6. the position of u is eligible in C · θ;
7. t ≈ t′ is strictly eligible in D · ρ;
8. if t′ρ is Boolean, then t′ρ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u′ · θ

IPGEqRes
C ′ · θ

C︷ ︸︸ ︷
C ′ ∨ u′ ≈ v′ ∨ u ≈ v · θ

IPGEqFact
C ′ ∨ v ̸≈ v′ ∨ u ≈ v′ · θ

Side conditions for IPGEqRes:

1. uθ = u′θ;
2. u ̸≈ u′ is eligible in C · θ.
Side conditions for IPGEqFact:
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1. uθ = u′θ;
2. u ≈ v · θ is maximal in C · θ;
3. there are no selected literals in C · θ;
4. uθ ≻ vθ.

C ′ ∨ s ≈ t · θ
IPGClausify

C ′ ∨ D · θ
with the following side conditions:

1. s ≈ t is strictly eligible in C ′ ∨ s ≈ t · θ;
2. The triple (s, tθ,D) has one of the following forms, where τ is an arbitrary type and u, v

are arbitrary terms:

(u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ v) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ̸≈ v)

(u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ̸≈ v) (u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ v)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

C u · θ
IPGBoolHoist

C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ · θ
C u · θ

IPGLoobHoist
C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ · θ

each with the following side conditions:

1. u is of Boolean type;
2. u is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
3. the position of u is eligible in C · θ;
4. the occurrence of u is not in a literal L with Lθ = (uθ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) or Lθ = (uθ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤).

C︷ ︸︸ ︷
C ′ ∨ s ≈ t ·θ

IPGFalseElim
C ′ · θ

with the following side conditions:

1. (s ≈ t)θ = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤;
2. s ≈ t is strictly eligible in C · θ.

C︷ ︸︸ ︷
C ′ ∨ s ≈ s′ ·θ

IPGArgCong
C ′ ∨ s diffτ,υ

u,w ≈ s′ diffτ,υ
u,w · θ

with the following side conditions:

1. s is of type τ → υ;
2. u,w are ground terms of type τ → υ;
3. s ≈ s′ is strictly eligible in C · θ.
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C u · θ
IPGExt

C w ∨ u diffτ,υ
uθ,wρ ̸≈ w diffτ,υ

uθ,wρ · ρ

with the following side conditions:

1. the position of u is eligible in C u · θ;
2. the type of u is τ → υ;
3. w ∈ TIPG is a term whose nonfunctional yellow subterms are different fresh variables;
4. uθ ≻ wρ;
5. ρ is a grounding substitution that coincides with θ on all variables in C u .

IPGDiff
u diffτ,υ

uθ,wθ ̸≈ u diffτ,υ
uθ,wθ ∨ u s ≈ w s · θ

with the following side conditions:

1. τ and υ are ground types;
2. u,w, s ∈ TIPG are terms whose nonfunctional yellow subterms are different variables;
3. θ is a grounding substitution.

5.3.3. Partly Substituted Ground Higher-Order Level. Like on the other levels, the calculus
PGInf is parameterized by a relation ≻ and a selection function sel .

Definition 5.22. Let ≻ be a relation on Tground(ΣH), on clauses over Tground(ΣH), and on
CPG. Such a relation ≻ is an admissible term order for PGInf if it fulfills the following
properties:

(O1)PG the relation ≻ on ground terms is a well-founded total order;
(O2)PG ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground

terms s, s′, and t;
(O3)PG ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4)PG u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)PG u ≻ u diff⟨τ, υ⟩(s, t) for all ground terms s, t, u : τ → υ.
(O6)PG the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];
(O7)PG for closures C · θ and D · ρ, we have C · θ ≻ D · ρ if and only if Cθ ≻ Dρ.

The calculus rules of PGInf are a verbatim copy of those of IPGInf , with the following
exceptions:

– PGInf uses ΣH instead of ΣI and CPG instead of CIPG.
– The rules are prefixed by PG instead of IPG.
– PGArgCong uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ

u,w.

– PGExt uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ
uθ,wρ.

– PGDiff uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ
uθ,wθ.
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5.4. Redundancy Criteria and Saturation. In this subsection, we define redundancy
criteria for the levels PF, IPG, PG, and H and show that saturation up to redundancy on
one level implies saturation up to redundancy on the previous level. We will use these results
in Section 5.6 to lift refutational completeness from level PF to level H.

Definition 5.23. A set N of clauses is called saturated up to redundancy if every inference
with premises in N is redundant w.r.t. N .

5.4.1. First-Order Level. In this subsection, let ≻ be an admissible term order for PFInf
(Definition 5.20), and let pfsel be a selection function on CPF (Definition 5.18).

We define a notion of variable-irreducibility, roughly following Nieuwenhuis and Ru-
bio [24] and Bachmair et al. [3] (where it is called “order-irreducibility”):

Definition 5.24. A closure literal L · θ ∈ CPF is variable-irreducible w.r.t. a ground term
rewrite system R if, for all variables x in L, xθ is irreducible w.r.t. the rules s → t ∈ R with
Lθ ≻ s ≈ t and all Boolean subterms of xθ are either ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. A closure C · θ ∈ CPF is
variable-irreducible w.r.t. R if all its literals are variable-irreducible w.r.t. R. Given a set N
of closures, we write irredR(N) for the set of variable-irreducible closures in N w.r.t. R.

Remark 5.25. The restriction that Lθ ≻ s ≈ t cannot be replaced by Cθ ≻ s ≈ t because
we need it to ensure that irredR(N) is saturated when N is.

Here is an example demonstrating that variable-irreducibilty would not be closed under
inferences if we used the entire clause for comparison: Let e ≻ d ≻ c ≻ b ≻ a and
R = {e → b}. Then a notion replacing the restriction Lθ ≻ s ≈ t by Cθ ≻ s ≈ t would say
that x ≈ a ∨ x ≈ b [[x ≡ e]] and e ≈ c ∨ e ≈ d are order-irreducible w.r.t. R. By Sup (second
literal of the first clause into the second literal of the second clause), we obtain

x ≈ a ∨ e ≈ c ∨ b ≈ d [[x ≡ e]]

Now xθ in the first literal has become order-reducible by e → b since e ≈ b is now smaller
than the largest literal e ≈ c of the clause.

Definition 5.26 (Inference Redundancy). Given ι ∈ PFInf and N ⊆ CPF, let ι ∈
PFRed I(N) if for all confluent term rewrite systems R oriented by ≻ whose only Boolean nor-
mal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that concl(ι) is variable-irreducible, we have R∪O |=oλ concl(ι),
where O = irredR(N) if ι is a Diff inference, and O = {E ∈ irredR(N) | E ≺ mprem(ι)}
otherwise.

To connect to the redundancy criteria of the higher levels, we need to establish a
connection to the FInf inference system defined in Section 3.7:

Lemma 5.27. Let ιPF ∈ PFInf ≻,pfsel . Let C1 ·θ1, . . . , Cm ·θm be its premises and Cm+1 ·θm+1

its conclusion. Then
C1θ1 · · ·Cmθm

Cm+1θm+1

is a valid FInf ≻ inference ιF, and the rule names of ιPF and ιF correspond up to the prefixes
PF and F.

Proof. This is easy to see by comparing the rules of PFInf and FInf . It is crucial that
the concepts of eligibility match: If a literal or a position is (strictly) eligible in a closure
C · θ ∈ CPF (according to the PF concept of eligibility), then the corresponding literal or
position is (strictly) eligible in Cθ (according to the F concept of eligibility).



48 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

5.4.2. Indexed Partly Substituted Ground Higher-Order Level. In this subsubsection, let
≻ be an admissible term order for IPGInf (Definition 5.21), and let ipgsel be a selection
function on CIPG (Definition 5.18).

To lift the notion of inference redundancy, we need to connect the inference systems
PFInf and IPGInf as follows. Since the mapping F is bijective (Lemma 5.4), we can transfer
the order ≻ from the IPG level to the PF level:

Definition 5.28. Based on ≻, we define a relation ≻F on ground terms TF, ground clauses
CF, and closures CPF as d ≻F e if and only if F −1(d) ≻ F −1(e) for all terms, clauses, or
closures d and e.

Lemma 5.29. Since ≻ is an admissible term order for IPGInf (Definition 5.21), the
relation ≻F is an admissible term order for PFInf (Definition 5.20).

Proof. This is easy to see, considering that F is a bijection between Tground(ΣI) and T gnd
PF

(Lemma 5.4), that higher-order yellow subterms and first-order subterms correspond by
Lemma 5.6, that F maps each side of each literal individually, and that F (C)F (θ) = F (Cθ)
for all C · θ ∈ CIPG (Lemma 5.5).

Since F is bijective, we can transfer the selection function as follows:

Definition 5.30. Based on ipgsel , we define F (ipgsel) as a selection function that selects
the literals of C ∈ CPF corresponding to the ipgsel -selected literals in F −1(C).

Definition 5.31. We extend F to inference rules by mapping an inference ι ∈ IPGInf to
the inference

F (prems(ι))

F (concl(ι))

Lemma 5.32. The mapping F is a bijection between IPGInf ≻,ipgsel and PFInf ≻F ,F (ipgsel).

Proof. This is easy to see by comparing the rules of IPGInf and PFInf . It is crucial that
the following concepts match:

– Green subterms on the PF level correspond to green subterms on the IPG level by
Lemma 5.7.

– The term orders correspond (Definition 5.28).
– The selected literals correspond; i.e., a literal L is selected in a closure C · θ if and only

if the literal F (L) is selected in F (C · θ). This follows directly from the definition of
F (ipgsel) (Definition 5.30).

– The concepts of eligibility correspond; i.e., a literal L of a closure C · θ ∈ CIPG is (strictly)
eligible w.r.t. ⪰ if and only if the literal F (L) of the closure F (C · θ) is (strictly) eligible
w.r.t. ⪰F ; and a position L.s.p of a closure C · θ ∈ CIPG is eligible w.r.t. ⪰ if and only
if the position F (L).F (s).q of the closure F (C · θ) is eligible w.r.t. ⪰F , where q is the
position corresponding to p. This is true because eligibility (Definition 5.19) depends only
on the selected literals and the term order, which correspond as discussed above.

Definition 5.33. Given a term rewrite system R on TF, we say that a closure C · θ ∈ CIPG

is variable-irreducible w.r.t. R and ≻ if F (C · θ) is variable-irreducible w.r.t. R and ≻F . We
write irredR(N) for all variable-irreducible closures in a set N ⊆ CIPG.

Definition 5.34 (Inference Redundancy). Given ι ∈ IPGInf ≻,ipgsel and N ⊆ CIPG, let
ι ∈ IPGRed I(N) if for all confluent term rewrite systems R on TF oriented by ≻F whose
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only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that concl(ι) is variable-irreducible w.r.t. R,
we have

R ∪O |=oλ F (concl(ι))

where O = irredR(F (N)) if ι is a IPGDiff inference, and O = {E ∈ irredR(F (N)) | E ≺F
F (mprem(ι))} otherwise.

Lemma 5.35. Let ιIPG ∈ IPGInf ≻,ipgsel . Let C1 · θ1, . . . , Cm · θm be its premises and
Cm+1 · θm+1 its conclusion. Then

F (C1θ1) · · ·F (Cmθm)

F (Cm+1θm+1)

is a valid FInf ≻F inference ιF, and the rule names of ιIPG and ιF correspond up to the
prefixes IPG and F.

Proof. By Lemma 5.32, we know that F (ιIPG) is a valid PFInf ≻F ,F (ipgsel) inference, and the
rule names coincide up to the prefixes PF and IPG.

Now, applying Lemma 5.27 to F (ιIPG) and using the fact that F (Ci)F (θi) = F (Ciθi)
(Lemma 5.5), we obtain that

F (C1θ1) · · · F (Cmθm)

F (Cm+1θm+1)

is a valid FInf ≻F inference ιF, and the rule names of F (ιIPG) and ιF correspond up to the
prefixes PF and F.

Combining these two results, we conclude that the rule names of ιIPG and ιF correspond
up to the prefixes IPG and F, which completes the proof.

Using the bijection between IPGInf and PFInf , we can show that saturation w.r.t.
IPGInf implies saturation w.r.t. PFInf :

Lemma 5.36. Let N be saturated up to redundancy w.r.t. IPGInf ≻,ipgsel . Then F (N) is

saturated up to redundancy w.r.t. PFInf ≻F ,F (ipgsel).

Proof. By Lemma 5.32 because the notions of inference redundancy correspond.

5.4.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let ≻ be an
admissible term order for PGInf (Definition 5.22), and let pgsel be a selection function on
CPG (Definition 5.18).

Since mapping J is clearly bijective for ground terms and ground clauses, we can transfer
≻ from the PG level to the IPG level as follows:

Definition 5.37. Let ≻ be a relation on Tground(ΣH), on clauses over Tground(ΣH), and
on closures CPG. We define a relation ≻J on Tground(ΣI) and on clauses over Tground(ΣI)
as d ≻J e if and only if J−1(d) ≻ J−1(e) for all terms or clauses d and e. For closures
C · θ,D · ρ ∈ CIPG, we define C · θ ≻J D · ρ if Cθ ≻J Dρ.

Lemma 5.38. Since ≻ is an admissible term order for PGInf (Definition 5.22), the relation
≻J is an admissible term order for IPGInf (Definition 5.21).

Proof. This is easy to see, considering that J is a bijection on ground terms and that J and
J−1 preserve yellow subterms.
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Lemma 5.39. Given D ·ρ, C ·θ ∈ CPG, we have D ·ρ ≻ C ·θ if and only if J (D ·ρ) ≻J J (C ·θ).

Proof. By (O7)IPG, D · ρ ≻ C · θ if and only if Cθ ≻ Dρ. By Definition 5.37, this is
equivalent to J (Dρ) ≻J J (Cθ). Since J (Dρ) = Jρ(D)J (ρ) and J (Cθ) = Jθ(C)J (θ) by
Lemma 5.9, this is equivalent to Jρ(D)J (ρ) ≻J Jθ(C)J (θ). By (O7)IPG, this is equivalent to
J (D · ρ) ≻J J (C · θ).

Definition 5.40. Given a term rewrite system R on TF, we say that a closure C · θ ∈ CPG is
variable-irreducible w.r.t. R if F (J (C · θ)) is. We write irredR(N) for all variable-irreducible
closures in a set N ⊆ CPG.

Definition 5.41 (Inference Redundancy). Let N ⊆ CPG. Let ι ∈ PGInf an inference with
premises C1 · θ1, . . . , Cm · θm and conclusion Cm+1 · θm+1. We define ι ∈ PGRed I(N) if

1. the inference ι′ given as

F (J (C1θ1)) · · · F (J (Cmθm))

F (J (Cm+1θm+1))

is not a valid FInf ≻JF inference such that the names of ι and ι′ correspond up to the
prefixes PG and F; or

2. for all confluent term rewrite systems R oriented by ≻JF whose only Boolean normal
forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that Cm+1 · θm+1 is variable-irreducible, we have

R ∪O |=oλ F (J (Cm+1 · θm+1))

where O = irredR(F (J (N))) if ι is a PGDiff inference and O = {E ∈ irredR(F (J (N))) |
E ≺JF F (J (Cmθm))} if ι is some other inference.

We transfer the selection function pgsel as follows:

Definition 5.42. Let N ⊆ CPG be a set of closures. Then we choose a function J−1
N ,

depending on this set N , such that J−1
N (C) ∈ N and J (J−1

N (C)) = C for all C ∈ J (N).
Then we define J (pgsel , N) as a selection function that selects the literals of C ∈ J (N)
corresponding to the pgsel -selected literals in J−1

N (C) and that selects arbitrary literals in
all other closures.

Lemma 5.43. Let N ⊆ CPG be saturated up to redundancy w.r.t. PGInf ≻,pgsel . Then J (N)

is saturated up to redundancy w.r.t. IPGInf ≻J ,J (pgsel ,N).

Proof. Let ι′ be a IPGInf ≻J ,J (pgsel ,N) inference from J (N). We must show that ι′ ∈
IPGRed I(J (N)). It suffices to construct a PGInf inference ι with premises J−1

N (prems(ι′))
such that J (concl(ι)) = concl(ι′) and the rule names of ι and ι′ coincide up to the pre-
fixes PG and IPG. Then, by saturation, ι ∈ PGRed I(N); i.e., condition 1 or condition 2
of Definition 5.41, is satisfied. Condition 1 cannot be satisfied because it contradicts
Lemma 5.35 applied to ι′. Thus, condition 2 must be satisfied. Then, by Definition 5.34,
ι′ ∈ IPGRed I(J (N)).

Finding such an inference ι is straightforward for all inference rules. We illustrate it
with the rule IPGEqRes: Let ι′ be

C ′ ∨ u ̸≈ u′ · θ
IPGEqRes

C ′ · θ
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Then there exists a corresponding PGInf inference ι from J−1
N (C ′ ∨ u ̸≈ u′ · θ). (See

Definition 5.42 for the definition of J−1
N .) The eligibility condition is fulfilled because the

term order, and the selections are transferred according to Definitions 5.37 and 5.42 and
Lemma 5.39. The equality condition is fulfilled by Lemma 5.10. The conclusion concl(ι) of
this inference has the property J (concl(ι)) = concl(ι′), as desired.

5.4.4. Full Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
(Definition 3.16) and let hsel be a selection function (Definition 3.18). We extend ≻ to
closures CPG by C · θ ≻ D · ρ if and only if Cθ ≻ Dρ. Then we can use it for PGInf as well:

Lemma 5.44. The relation ≻ is an admissible term order for PGInf .

Proof. Conditions (O1) to (O6) are identical to conditions (O1)PG to (O6)PG. Condi-
tion (O7)PG is fulfilled by the given extension of ≻ to closures.

Definition 5.45. Given a term rewrite system R on TF, we say that a closure C · θ ∈ CG

is variable-irreducible w.r.t. R if F (J (P (C · θ))) is. We write irredR(N) for all variable-
irreducible closures in a set N ⊆ CG.

For the H level, we define both clause and inference redundancy. Below, we write
FJPG(C) for F (J (P (G(C)))) and FJP (C) for F (J (P (C))).

Definition 5.46 (Clause Redundancy). Given a constrained clause C ∈ CH and a set
N ⊆ CH, let C ∈ HRedC(N) if for all confluent term rewrite systems R on TF oriented by
≻JF whose only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and all C ′ ∈ irredR(FJPG(C)), at least
one of the following two conditions holds:

1. R ∪ {E ∈ irredR(FJPG(N)) | E ≺JF C ′} |=oλ C ′; or
2. there exists clauses D ∈ N and D′ ∈ irredR(FJPG(D)) such that C ⊐ D and T (D′) =

T (C ′).

Definition 5.47 (Inference Redundancy). Let N ⊆ CH. Let ι ∈ HInf an inference
with premises C1[[S1]], . . . , Cm[[Sm]] and conclusion Cm+1[[Sm+1]]. We define HRed I so
that ι ∈ HRed I(N) if for all substitutions (θ1, . . . , θm+1) for which ι is rooted in FInf
(Definition 3.31), and for all confluent term rewrite systems R oriented by ≻JF whose only
Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that Cm+1 · θm+1 is variable-irreducible, we have

R ∪O |=oλ F (Cm+1θm+1)

where O = irredR(FJPG(N)) if ι is a Diff inference and O = {E ∈ irredR(FJPG(N)) |
E ≺JF F (Cmθm)} if ι is some other inference.

The selection function is transferred in a similar way as with J :

Definition 5.48. Let N ⊆ CG. We choose a function P−1
N , depending on this set N , such

that P−1
N (C) ∈ N and P (P−1

N (C)) = C for all C ∈ P (N). Similarly, for N ⊆ CH, we choose

a function G−1
N , depending on this set N , such that G−1

N (C) ∈ N and G(G−1
N (C)) = C for

all C ∈ G(N).
Then we define PG(hsel , N) as a selection function for CPG as follows: Given a clause

CPG ∈ PG(N), let CH ·θ = P−1
G(N)(CPG) and CH[[S]] = G−1

N (CH ·θ). We define PG(hsel , N) to

select LPG ∈ CPG if and only if there exists a literal LH selected in CH[[S]] by hsel such that
LPG = LHp(θ). Given a clause CPG ̸∈ PG(N), PG(hsel , N) can select arbitrary literals.
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Lemma 5.49. Let R be a confluent term rewrite system on TPF oriented by ≻JF whose only
Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let C · θ,D · ρ ∈ CPG. Let C · θ be variable-irreducible
w.r.t. R. Let σ be a substitution such that zθ = zσρ for all variables z in C and D = Cσ.
Then D · ρ is variable-irreducible w.r.t. R.

Proof. Let L be a literal in F (Jρ(D)). We must show that for all variables x in L, F (J (xρ))
is irreducible w.r.t. the rules s → t ∈ R with LF (J (ρ)) ≻JF s ≈ t and all Boolean subterms
of F (J (xρ)) are either ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then there exists a literal L0 ∈ D such that L = F (Jρ(L0)).
Let x be a variable in L. Then it is also a variable in L0, occurring outside of parameters.
Since D = Cσ, x occurs in Cσ outside of parameters. Since C · θ ∈ CPG, the clause C
contains only nonfunctional variables, and thus a literal L′

0 ∈ C with L′
0σ = L0 must

contain a variable z outside of parameters such that x occurs outside of parameters in
zσ. So F (J (xρ)) is a subterm of F (J (zσρ)) = F (J (zθ)). Let L′ = F (Jθ(L′

0)) ∈ F (Jθ(C)).
Then L′ also contains z. By variable-irreducibility of C · θ, F (J (zθ)) is irreducible w.r.t.
the rules s → t ∈ R with L′F (J (θ)) ≻JF s ≈ t and all Boolean subterms of F (J (zθ))
are either ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then the subterm F (J (xρ)) of F (J (zθ)) is also irreducible w.r.t. the
rules s → t ∈ R with L′F (J (θ)) ≻JF s ≈ t and all Boolean subterms of F (J (xρ)) are
either ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. It remains to show that L′F (J (θ)) = LF (J (ρ)). We have L′F (J (θ)) =
F (Jθ(L′

0))F (J (θ)) = F (Jθ(L′
0θ)) = F (Jθ(L′

0σρ)) = F (Jρ(L0ρ)) = F (Jρ(L0))F (J (ρ)) =
LF (J (ρ)), using Lemma 5.5 and Lemma 5.9.

Lemma 5.50 (Lifting of Order Conditions). Let t[[T ]] and s[[S]] be constrained terms over
T (ΣH), and let ζ be a grounding substitution such that Sζ and Tζ are true. If tζ ≻ sζ, then
t[[T ]] ̸⪯ s[[S]]. The same holds for constrained literals.

Proof. We prove the contrapositive. If t[[T ]] ⪯ s[[S]], then, by (O7), tζ ⪯ sζ. Therefore, since
≻ is asymmetric by (O1), tζ ̸≻ sζ. The proof for constrained literals is analogous, using
(O6) and (O8).

Lemma 5.51 (Lifting of Maximality Conditions). Let C[[S]] ∈ CH. Let θ be a grounding
substitution. Let L0 be (strictly) maximal in Cθ. Then there exists a literal L that is (strictly)
maximal in C[[S]] such that Lθ = L0.

Proof. By Definition 3.17, a literal L of a constrained clause C[[S]] is maximal if for all
K ∈ C such that K[[S]] ⪰ L[[S]], we have K[[S]] ⪯ L[[S]].

Since L0 ∈ Cθ, there exist literals L in C[[S]] such that Lθ = L0. Let L be a maximal
one among these literals. A maximal one must exist because ≻ is transitive on constrained
literals by (O9) and transitivity implies existence of maximal elements in nonempty finite
sets. Let K be a literal in C[[S]] such that K[[S]] ⪰ L[[S]]. We must show that K[[S]] ⪯ L[[S]].
By Lemma 5.50, Kθ ̸≺ Lθ = L0. By (O1), ≻ is a total order on ground terms, and thus
Kθ ⪰ L0. By maximality of L0 in Cθ, we have Kθ ⪯ L0 and thus Kθ = L0 by (O1).
Then K[[S]] ⪯ L[[S]] because we chose L to be maximal among all literals in C[[S]] such that
Lθ = L0.

For strict maximality, we simply observe that if L occurs more than once in C, it also
occurs more than once in Cθ.

Lemma 5.52 (Lifting of Eligibility). Let N ⊆ CH. Let CPG · θPG ∈ PG(N), let CH · θ =
P−1

G(N)(CPG · θPG) and let CH[[S]] = G−1
N (CH · θ).

– Let LPG be a literal in CPG · θPG that is (strictly) eligible w.r.t. PG(hsel , N). Then there
exists a literal LH in CH such that LPG = LHp(θ) and, given substitutions σ and ζ with
xθ = xσζ for all variables x in CH[[S]], LH is (strictly) eligible in CH[[S]] w.r.t. σ and hsel .
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– Let LPG.sPG.pPG be a green position of CPG · θPG that is eligible w.r.t. PG(hsel , N). Then
there exists a green position LH.sH.pH of CH such that
– LPG = LHp(θ);
– sPG = sHp(θ);
– ∗ pPG = pH, or

∗ pPG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH is not
a variable but is variable-headed, and uHθ is nonfunctional; and

– given substitutions σ and ζ with xθ = xσζ for all variables x in CH[[S]], LH.sH.pH is
eligible in CH[[S]] w.r.t. σ and hsel .

Proof. Let LPG be a literal in CPG · θPG that is (strictly) eligible w.r.t. PG(hsel , N). By the
definition of eligibility (Definition 5.19), there are two ways to be (strictly) eligible:

– LPG is selected by PG(hsel , N). By Definition 5.48, there exists a literal LH selected by
hsel such that LPG = LHp(θ). By Definition 3.19, LH is (strictly) eligible in CH[[S]] w.r.t.
σ because it is selected.

– There are no selected literals in CPG · θPG and LPGθPG is (strictly) maximal in CPGθPG.
By Definition 5.48, there are no selected literals in CH[[S]]. Since CPGθPG = CHθ = CHσζ,
by Lemma 5.51, there exists a literal LH ∈ CH such that LHσ is (strictly) maximal in
CHσ. By Definition 3.19, LH is (strictly) eligible in CH[[S]] w.r.t. σ.

For the second part of the lemma, let LPG.sPG.pPG be a green position of CPG ·θPG that
is eligible w.r.t. PG(hsel , N). By Definition 5.19, the literal LPG is of the form sPG ≈̇ tPG
with sPGθPG ≻ tPGθPG and LPG is either negative and eligible or positive and strictly
eligible. By the first part of this lemma, there exists a literal LH in CH that is either
negative and eligible or positive and strictly eligible in CH[[S]] w.r.t. σ and hsel such that
LPG = LHp(θ). Then LH must be of the form sH ≈̇ tH with sPG = sHp(θ) and tPG = tHp(θ).
Since sPGθPG ≻ tPGθPG, we have sH ̸⪯ tH. By Definition 3.19, every green position in LH.sH
is eligible in CH[[S]] w.r.t. σ and hsel .

It remains to show that there exists a green position LH.sH.pH in CH such that either
pPG = pH or pPG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH

is not a variable but variable-headed, and uHθ is nonfunctional.
Since pPG is a green position of sPG = sHp(θ), position pPG must either be a green

position of sH or be below a variable-headed term in sH. In the first case, we set pH = pPG.
In the second case, let pH be the position of the variable-headed term. Then pH.q = pPG for
some nonempty q. Moreover, since pPG is a green position of sPG, the subterm of sPG at
position pH, which is uHθ, cannot be functional. Since p(θ) maps nonfunctional variables
to nonfunctional variables, the subterm of sH at position pH cannot be a variable, but it is
variable-headed.

Lemma 5.53 (Lifting Lemma). Let N ⊆ CH be saturated up to redundancy w.r.t. HInf ≻,hsel .

Then PG(N) is saturated up to redundancy w.r.t. PGInf ≻,PG(hsel ,N).

Proof. Let ιPG be a PGInf inference from PG(N). We must show that ιPG ∈ PGRed I(PG(N)).
It suffices to construct a HInf inference ιH from N such that ιH and ιPG are of the form

C1[[S1]] · · · Cm[[Sm]]
ιH

Cm+1[[Sm+1]]

P (C1 · θ1) . . . P (Cm · θm)
ιPG

E · ξ (∗)
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for some C1[[S1]], · · · , Cm+1[[Sm+1]] ∈ CH, E · ξ ∈ CPG, and grounding substitutions θ1, . . . ,
θm+1 such that S1θ1,. . . ,Sm+1θm+1 are true and Cm+1p(θm+1) = Eπ and xπq(θm+1) = xξ
for some substitution π and all variables x in E.

Here is why this suffices: By Definition 5.41, it suffices to show that for all confluent
term rewrite systems R on TF oriented by ≻JF whose only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, such that E · ξ is variable-irreducible w.r.t. R, we have

R ∪O |=oλ F (J (E · ξ))

where O = irredR(F (J (G(N)))) if ιPG is a Diff inference, and otherwise O = {E ∈
irredR(F (J (G(N)))) | E ≺ F (J (P (Cm · θm)))}. Let R be such a rewrite system. By
Lemma 5.49, since E · ξ is variable-irreducible, using Eπ = Cm+1p(θm+1), and xξ =
xπq(θm+1), also Cm+1p(θm+1) · q(θm+1) and thus Cm+1 · θm+1 are variable-irreducible w.r.t.
R. By saturation, ιH ∈ HRed I(N), and thus, by definition of HRed I, (Definition 5.47), it
suffices to show that ιH is rooted in FInf for (θ1, . . . , θm+1) (Definition 3.31), which holds
by Lemma 5.11, Definition 5.41 and the fact that Cm+1θm+1 = Cm+1p(θm+1)q(θm+1) =
Eπq(θm+1) = Eξ.

For most rules, the following special case of (∗) suffices: We construct a HInf inference
ιH from N such that ιH and ιPG are of the form

C1[[S1]] · · · Cm[[Sm]]
ιH

C ′
m+1σ [[S′

m+1]]

P (C1 · θ1) · · · P (Cm · θm)
ιPG

C ′
m+1p(σζ) · ξ (∗∗)

for some C1[[S1]], · · · , Cm[[Sm]], C ′
m+1[[S

′
m+1]] ∈ CH and substitutions θ1, . . . , θm, ζ, σ, ξ such

that S1θ1,. . . ,Smθm, S′
m+1ζ are true and xξ = xq(σζ) for all variables x in C ′

m+1p(σζ).
Here is why this is a special case of (∗) with Cm+1 = C ′

m+1σ, Sm+1 = S′
m+1, E =

C ′
m+1p(σζ): By Lemma 5.16, there exists a substitution π such that σp(ζ) = p(σζ)π and

q(σζ) = πq(ζ). Thus, Cm+1p(ζ) = C ′
m+1σp(ζ) = C ′

m+1p(σζ)π = Eπ and xπq(ζ) = xq(σζ) =
xξ for all variables x in E, as required for (∗).

PGSup: If ιPG is a PGSup inference

DPG︷ ︸︸ ︷
D′

PG ∨ tPG ≈ t′PG · ρPG CPG uPG · θPG
PGSup

D′
PG ∨ CPG t′PG · (ρPG ∪ θPG)

then we construct a corresponding Sup or FluidSup inference ιH. Let DH ·ρH = P−1
G(N)(DPG ·

ρPG) and CH · θH = P−1
G(N)(CPG · θPG). (See Definition 5.48 for the definition of P−1

G(N).) Let

DH[[T ]] = G−1
N (DH · ρH) and CH[[S]] = G−1

N (CH · θH). (See Definition 5.48 for the definition

of G−1
N .) These clauses DH[[T ]] and CH[[S]] will be the premises of ιH. Condition 7 of PGSup

states that tH ≈ t′H is strictly eligible in DPG · ρPG. Let DH = D′
H ∨ tH ≈ t′H, where tH ≈ t′H

is the literal that Lemma 5.51 guarantees to be strictly eligible with tHp(θH) = tPG and
t′Hp(θH) = t′PG. Condition 8 of PGSup states that if t′PGρPG is Boolean, then t′PGρPG = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.
Thus, there are no selected literals in DPG · ρPG. By Definition 5.48, it follows that there
are no selected literals in DH[[T ]] · ρH (condition 7 of Sup or FluidSup) and that tH ≈ t′H is
strictly maximal (condition 6 of Sup or FluidSup). Let LPG.sPG.pPG be the position of
the green subterm uPG in CPG. Condition 6 of PGSup states that LPG.sPG.pPG is eligible
in CPG · θPG. Let LH.sH.pH be the position in CH that Lemma 5.52 guarantees to be eligible
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in CH[[S]] w.r.t. any suitable σ (condition 5 of Sup or FluidSup). Let uH be the subterm
of CH at position LH.sH.pH. By Lemma 5.52, one of the following cases applies:

Case 1: pPG = pH. Then we construct a Sup inference.
Lemma 5.52 tells us that sPG = sHp(θH) and thus uPG = uHp(θH) because pPG = pH.

By condition 1 of PGSup, tPGρPG = uPGθPG. It follows that tHρH = tHp(ρH)q(ρH) =
tPGρPG = uPGθPG = uHp(θH)q(θH) = uHθH. Let ρH ∪ θH be the substitution that coincides
with ρH on all variables in DH[[T ]] and with θH on all other variables. Then ρH∪θH is a unifier
of tH and uH. Moreover, by construction, TρH and SθH are true. Thus, by definition of
CSUupto (Definition 3.11), there exists (σ, U) ∈ CSUupto(T, S, tH ≡ uH) (condition 1 of Sup)
and a substitution ζ such that Uζ is true and xσζ = x(ρH ∪ θH) for all relevant variables x.

Conditions 2 and 3 of PGSup state that uPG = uHp(θH) is not a variable and nonfunc-
tional. Thus, by definition of p, uH is not a variable and uHσ is nonfunctional (conditions
2 and 3 of Sup).

By Lemma 5.50, the condition (tH[[T ]]) ̸⪯ (t′H[[T ]]) (condition 4 of Sup) follows from
condition 4 of PGSup.

Finally, the given inference ιPG and the constructed inference ιH are of the form (∗∗)
with C1[[S1]] = DH[[T ]], C2[[S2]] = CH[[S]], C

′
3 = D′

H ∨ CH t′H pH S′
3 = U , θ1 = ρH, θ2 = θH,

and ξ = ρPG ∪ θPG.

Case 2: pPG = pH.q for some nonempty q, uH is not a variable but is variable-headed, and
uHθ is nonfunctional. Then we construct a FluidSup inference.

Lemma 5.52 tells us that sPG = sHp(θH). Thus, the subterm of sPG at position pH is
uHp(θH). So q is a green position of uHp(θH), and the subterm at that position is uPG—i.e.,
uHp(θH) = (uHp(θH)) uPG q. Let v = λ (uHp(θH)) n q, where n is the appropriate De
Bruijn index to refer to the initial λ.

Let z be a fresh variable (condition 8 of FluidSup). We define θ′H by zθ′H = vθPG,
xθ′H = xρH for all variables x in DH[[T ]] and xθ′H = xθH for all other variables x. Then,
using condition 1 of PGSup, z tHθ

′
H = vθPG (tHρH) = vθPG (tPGρPG) = vθPG (uPGθPG) =

(vuPG)θPG = (uHp(θH)) uPG qθPG = uHp(θH)θPG = uHθH = uHθ
′
H. So θ′H is a unifier of z tH

and uH. Thus, by definition of CSU (Definition 3.13), there exists a unifier σ ∈ CSU(z tH ≡
uH) and a substitution ζ such that xσζ = xθ′H for all relevant variables x (condition 1 of
FluidSup).

By the assumption of this case, uH is not a variable but is variable-headed (condition 2
of FluidSup).

Since q is a green position of uHp(θH), the type of uHp(θH) and the type of uHσ is
nonfunctional (condition 3 of FluidSup).

By Lemma 5.50, the condition tH[[T ]] ̸⪯ t′H[[T ]] (condition 4 of FluidSup) follows from
condition 4 of PGSup.

By condition 4 of PGSup, tHρH = tPGρPG ̸= t′PGρPG = t′HρH. Thus, (z tH)σζ =
vθPG (tHρH) = (uHp(θH))θPG tHρH q ̸= (uHp(θH))θPG t′HρH q = vθPG (t′HρH) = (z t′H)σζ.
So, (z t′H)σ ̸= (z tH)σ (condition 9 of FluidSup).

Since zσζ = vθPG and vθPG ̸= λ0 because q is nonempty, we have zσ ̸= λ0 (condition 10
of FluidSup).

The inferences ιPG and ιH are of the form (∗) with C1[[S1]] = DH[[T ]], C2[[S2]] = CH[[S]],
C3[[S3]] = (D′

H ∨ CH z t′H pH [[T, S]])σ, θ1 = ρH, θ2 = θH, θ3 = ζ, E = D′
PG ∨ CPG t′PG pPG ,

and ξ = ρPG ∪ θPG. In the following, we elaborate why C3p(θ3) = Eπ and xπq(θ3) = xξ for
some substitution π and all variables x in E, as required for (∗). We invoke Lemma 5.16 to
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obtain a substitution π such that σp(ζ) = p(σζ)π and q(σζ) = πq(ζ). Then

C3p(θ3) = (D′
H ∨ CH z t′H pH)σp(ζ)

= (D′
Hσp(ζ) ∨ CHσp(ζ) (z t′H)σp(ζ) pH)

(1)
= (D′

Hσp(ζ) ∨ CHσp(ζ) (z tH)σp(ζ) t′Hσp(ζ) q pH)

(2)
= (D′

Hσp(ζ) ∨ CHσp(ζ) uHσp(ζ) t′Hσp(ζ) q pH)

(3)
= (D′

Hσp(ζ) ∨ CHσp(ζ) t′Hσp(ζ) pPG)

= (D′
Hp(σζ)π ∨ CHp(σζ)π t′Hp(σζ)π pPG)

= (D′
Hp(σζ) ∨ CHp(σζ) t′Hp(σζ) pPG)π

= (D′
PG ∨ CPG t′PG pPG)π

= Eπ

Step (1) can be justified as follows: By Lemma 5.12, zσp(ζ)q(ζ) = vθPG. Since zσp(ζ) and
vθPG contain only nonfunctional variables, zσp(ζ) must be a λ-abstraction whose λ binds
exactly one De Bruijn index, which is located at orange position 1.q w.r.t. ↓βηlong. Thus,
(z tH)σp(ζ) and (z t′H)σp(ζ) are identical up to the subterm at green position q, which is
tHσp(ζ) and t′Hσp(ζ) respectively. For step (2), we use that (z tH)σ = uHσ. For step (3), we
use that uH is the green subterm of CH at position pH.

PGEqRes: If ιPG is an PGEqRes inference
CPG︷ ︸︸ ︷

C ′
PG ∨ uPG ̸≈ u′PG · θPG

PGEqRes
C ′
PG · θPG

, then we construct a corresponding EqRes inference ιH. Let CH · θH = P−1
G(N)(CPG · θPG)

and CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH.

A condition of PGEqRes is that uPG ̸≈ u′PG is eligible in CPG · θPG. Let CH = C ′
H ∨

uH ̸≈ u′H, where uH ̸≈ u′H is the literal that Lemma 5.52 guarantees to be eligible w.r.t. any
suitable σ, with uHp(θH) = uPG and u′Hp(θH) = u′PG.

Another condition of PGEqRes states that uPGθPG = u′PGθPG. Thus, uHθH = u′HθH,
and therefore there exists (σ, U) ∈ CSUupto(S, uH ≡ u′H) and a substitution ζ such that Uζ
is true and xσζ = xθH for all variables x in CH[[S]].

Finally, the given inference ιPG and the constructed inference ιH are of the form (∗∗)
with C1[[S1]] = CH[[S]], C

′
2 = C ′

H, S
′
2 = U , θ1 = θH, and ξ = θPG.

PGEqFact: If ιPG is an PGEqFact inference
CPG︷ ︸︸ ︷

C ′
PG ∨ u′PG ≈ v′PG ∨ uPG ≈ vPG · θPG

PGEqFact
C ′
PG ∨ vPG ̸≈ v′PG ∨ uPG ≈ v′PG · θPG

then we construct a corresponding EqFact inference ιH. Let CH · θH = P−1
G(N)(CPG · θPG)

and CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH.

A condition of PGEqFact is that uPG ≈ vPG · θPG is maximal in CPG · θPG. Let
uH ≈ vH be the literal that Lemma 5.51 guarantees to be maximal in CH[[S]] w.r.t. any
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suitable σ, with uHp(θH) = uPG and vHp(θH) = vPG. Choose C ′
H, u

′
H, and v′H such that

CH = C ′
H ∨ u′H ≈ v′H ∨ uH ≈ vH, C

′
Hp(θH) = C ′

PG, u
′
Hp(θH) = u′PG, and v′Hp(θH) = v′PG.

Another condition of PGEqFact states that there are no selected literals in CPG · θPG.
By Definition 5.48, it follows that there are no selected literals in CH[[S]].

Another condition of PGEqFact states that uPGθPG = u′PGθPG. Thus, uHθH = u′HθH,
and therefore there exists (σ, U) ∈ CSUupto(S, uH ≡ u′H) and a substitution ζ such that Uζ
is true and xσζ = xθH for all variables x in CH[[S]].

The last condition of PGEqFact is that uPGθPG ≻ vPGθPG—i.e., uHσζ ≻ vHσζ. By
Lemma 5.50, (uH[[S]])σ ̸⪯ (vH[[S]])σ.

Finally, the given inference ιPG and the constructed inference ιH are of the form (∗∗)
with C1[[S1]] = CH[[S]], C

′
2 = C ′

H ∨ vH ̸≈ v′H ∨ uH ≈ v′H, S
′
2 = U , θ1 = θH, and ξ = θPG.

PGClausify: If ιPG is a PGClausify inference

CPG︷ ︸︸ ︷
C ′
PG ∨ sPG ≈ tPG ·θPG

PGClausify
C ′
PG ∨ DPG · θPG

with τPG being the type and uPG and vPG being the terms used for condition 2. Then we
construct a corresponding Clausify inference ιH. Let CH · θH = P−1

G(N)(CPG · θPG) and

CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH.

Condition 1 of PGClausify is that sPG ≈ tPG is strictly eligible in CPG · θPG. Let
CH = C ′

H ∨ sH ≈ tH, where sH ≈ tH is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable σ (condition 2 of Clausify), with sHp(θH) = sPG and
tHp(θH) = tPG.

Comparing the listed triples in PGClausify and Clausify, we see that there must be
a triple (s′H, t

′
H, DH) listed for Clausify such that (s′Hρ, t

′
Hρ,DHρ) = (sPG, tPGθPG, DPG)

with ρ = {α 7→ τPG, x 7→ uPG, y 7→ vPG} is the triple used for ιPG (condition 4 of Clausify).
Inspecting the listed triples, we see that sPG cannot be a variable and that sPGθPG = sHθH
is of Boolean type. It follows that sH is not a variable (condition 3 of Clausify) because if
it were, then, by definition of p, sHp(θH) = sPG would be a variable.

Moreover, we observe that sHθH = sPGθPG = s′HρθPG and tHθH = tPGθPG = t′Hρ =
t′HρθPG. Thus the substitution mapping all variables x in s′H and t′H to xρθPG and all
other variables x to xθH is a unifier of sH ≡ s′H and tH ≡ t′H. So there exists a unifier
σ ∈ CSU(sH ≡ s′H, tH ≡ t′H) (condition 1 of Clausify) and a substitution ζ such that
xσζ = xθH for all variables x in CH[[S]].

Finally, the given inference ιPG and the constructed inference ιH are of the form (∗∗)
with C1[[S1]] = CH[[S]], C

′
2 = C ′

H ∨ DH, S
′
2 = Sσ, θ1 = θH, and ξ = θPG.

PGBoolHoist: If ιPG is a PGBoolHoist inference

CPG uPG · θPG
PGBoolHoist

CPG ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ uPG ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ · θPG
then we construct a corresponding BoolHoist or FluidBoolHoist inference ιH. Let
CH ·θH = P−1

G(N)(CPG ·θPG) and CH[[S]] = G−1
N (CH ·θH). This clause CH[[S]] will be the premise

of ιH. Let LPG.sPG.pPG be the position of uPG in CPG. Condition 3 of PGBoolHoist states
that LPG.sPG.pPG is eligible in CPG · θPG. Let LH.sH.pH be the position that Lemma 5.52
guarantees to be eligible in CH[[S]] w.r.t. any suitable σ (condition 3 of BoolHoist or
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condition 8 of FluidBoolHoist). Let uH be the subterm at position LH.sH.pH in CH[[S]].
By Lemma 5.52, one of the following cases applies:

Case 1: pPG = pH. Then we construct a BoolHoist inference.
Lemma 5.52 tells us that sPG = sHp(θH) and thus uPG = uHp(θH) because pPG = pH.

By Condition 1 of PGBoolHoist, uPG = uHp(θH) is of Boolean type and thus uHθH is of
Boolean type. So there exists a most general type substitution σ such that uH is Boolean
(condition 1 of BoolHoist) and a substitution ζ such that xσζ = xθH for all variables x in
CH[[S]].

By condition 2 of PGBoolHoist, uPG = uHp(θH) is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. By condition 1 of PGBoolHoist, uPG = uHp(θH) is nonfunctional. So, using the
definition of p, uH is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (condition 2 of BoolHoist).

By condition 4 of PGBoolHoist, LPGθPG is not of the form uPGθPG ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or uPGθPG ≈
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since LPGθPG = LHθH and uPGθPG = uHθH, it follows that LH is not of the form uH ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
or uH ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (condition 4 of BoolHoist).

Finally, the given inference ιPG and the constructed inference ιH are of the form (∗∗)
with C1[[S1]] = CH[[S]], C

′
2 = CH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ uH ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, S′

2 = Sσ, θ1 = θH, and ξ = θPG.

Case 2: pPG = pH.q for some nonempty q, uH is not a variable but is variable-headed, and
uHθ is nonfunctional. Then we construct a FluidBoolHoist inference. By the assumption
of this case, uH is not a variable but is variable-headed (condition 1 of FluidBoolHoist).

Lemma 5.52 tells us that sPG = sHp(θH). Thus, the subterm of sPG at position pH is
uHp(θH). So q is a green position of uHp(θH), and the subterm at that position is uPG.

Since uPG is the green subterm at position q of uHp(θH), uHp(θH) = (uHp(θH)) uPG q.
Let v = λ (uHp(θH)) n q, where n is the appropriate De Bruijn index to refer to the initial
λ.

Let zH and xH be fresh variables (condition 3 of FluidBoolHoist). We define θ′H =
(θH[zH 7→ vθPG, xH 7→ uPGθPG]). Then (zH xH)θ

′
H = vθPG (uPGθPG) = (v uPG)θPG =

(v uHp(θH))θPG = (uHp(θH)) uHp(θH) qθPGuHp(θH)θPG = uHp(θH)q(θH) = uHθHuHθ
′
H. So

θ′H is a unifier of zH xH and uH. Thus, by definition of CSU (Definition 3.13), there exists
a unifier σ ∈ CSU(zH xH ≡ uH) and a substitution ζ such that xσζ = xθ′H for all relevant
variables x (condition 4 of FluidBoolHoist).

Since q is a green position of uHp(θH), the type of uHp(θH) and the type of uHσ is
nonfunctional (condition 2 of FluidBoolHoist).

Since zσζ = vθPG and vθPG ̸= λ 0 because q is nonempty, we have zσ ̸= λ 0 (condition 6
of FluidBoolHoist).

Condition 3 of PGBoolHoist states that uPG is not a variable and is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor
⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. So uPGθPG = xHσζ is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and thus xHσ is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (condition 7 of
FluidBoolHoist). Moreover, (zH xH)σζ = vθPG (uPGθPG) = (uHp(θH)θPG) uPGθPG q ̸=
(uHp(θH)θPG) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ qθPG = vθPG ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ = (zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σζ. Thus, (zH xH)σ ̸= (zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ (condition 5 of
FluidBoolHoist).

The inferences ιPG and ιH are of the form (∗) with C1[[S1]] = CH[[S]], C2[[S2]] =
(CH zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pH ∨ xH ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤[[S]])σ, θ1 = θH, θ2 = ζ, E = CPG ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pPG ∨ uPG ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, and
ξ = θPG. In the following, we elaborate why C2p(θ2) = Eπ and xπq(θ2) = xξ for some
substitution π and all variables x in E, as required for (∗). The reasoning is similar to
that in the FluidSup case. We invoke Lemma 5.16 to obtain a substitution π such that
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σp(ζ) = p(σζ)π and q(σζ) = πq(ζ). Then

C2p(θ2) = (CH zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pH ∨ xH ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σp(ζ)

= CHσp(ζ) (zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σp(ζ) pH ∨ xHσp(ζ) ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(1)
= CHσp(ζ) (zH xH)σp(ζ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ q pH ∨ uPGπ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(2)
= CHσp(ζ) uHσp(ζ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ q pH ∨ uPGπ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(3)
= CHσp(ζ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pPG ∨ uPGπ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
= CHp(σζ)π ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pPG ∨ uPGπ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
= (CHp(σζ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pPG ∨ uPG ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)π

= (CPG ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ pPG ∨ uPG ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)π

= Eπ

Step (1) can be justified as follows: By Lemma 5.12, zHσp(ζ)q(ζ) = vθPG. Since zHσp(ζ)
and v contain only nonfunctional variables, zHσp(ζ) must be a λ-abstraction whose λ
binds exactly one De Bruijn index, which is located at orange position 1.q w.r.t. ↓βηlong.
Thus, (zH xH)σp(ζ) and (zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σp(ζ) are identical up to the subterm at green position q,
which is xHσp(ζ) and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ respectively. So, (zH ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σp(ζ) = (zH xH)σp(ζ) ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ q. Moreover,
since (zH xH)σp(ζ) xHσp(ζ) q = (zH xH)σp(ζ) = uHσp(ζ) = uHp(σθ)π = uHp(θH)π =
uHp(θH) uPG qπ, we have xHσp(ζ) = uPGπ. For step (2), we use that (zH xH)σ = uHσ. For
step (3), we use that uH is the green subterm of CH at position pH.

PGLoobHoist: Analogous to PGBoolHoist.

PGFalseElim: If ιPG is a PGFalseElim inference

CPG︷ ︸︸ ︷
C ′
PG ∨ sPG ≈ tPG ·θPG

PGFalseElim
C ′
PG · θPG

then we construct a corresponding FalseElim inference ιH. Let CH · θH = P−1
G(N)(CPG · θPG)

and CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH.

Condition 2 of PGFalseElim states that sPG ≈ tPG is strictly eligible in in CPG · θPG.
Let CH = C ′

H ∨ sH ≈ tH, where sH ≈ tH is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable σ (condition 2 of FalseElim), with sHp(θH) = sPG and
tHp(θH) = tPG.

Condition 1 of PGFalseElim states that (sPG ≈ tPG)θPG = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. So θH is a
unifier of sH ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and tH ≡ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. By construction, SθH is true. So there exists (σ, U) ∈
CSUupto(S, sH ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, tH ≡ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (condition 1 of FalseElim) and a substitution ζ such that Uζ
is true and xσζ = xθH for all variables x in CH[[S]].

The inferences ιPG and ιH are of the form (∗∗) with C1[[S1]] = CH[[S]], C
′
2 = C ′

H ∨ sH ≈ tH,
S′
2 = U , θ1 = θH, and ξ = θPG.

PGArgCong: If ιPG is a PGArgCong inference

CPG︷ ︸︸ ︷
C ′
PG ∨ sPG ≈ s′PG ·θPG

PGArgCong
C ′
PG ∨ sPG diff⟨τ, υ⟩(uPG, wPG) ≈ s′PG diff⟨τ, υ⟩(uPG, wPG) · θPG
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then we construct a corresponding ArgCong inference ιH. Let CH · θH = P−1
G(N)(CPG · θPG)

and CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH.

Condition 3 of PGArgCong states that sPG ≈ s′PG is strictly eligible in in CPG · θPG.
Let CH = C ′

H ∨ sH ≈ s′H, where sH ≈ s′H is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable σ (condition 2 of ArgCong), with sHp(θH) = sPG and
s′Hp(θH) = s′PG.

Let x be a fresh variable (condition 3 of ArgCong). Let θ′H = θH[x 7→ diff⟨τ, υ⟩(uPG,
wPG)].

Condition 1 of PGArgCong states that sPG is of type τ → υ. Since PG does not
use type variables, τ and υ are ground types, and thus sPGθPG = sHθH = sHθ

′
H is of type

τ → υ. Let σ be the most general type substitution such that sHσ is of functional type
(condition 1 of ArgCong), and let ζ be a substitution such that yσζ = yθ′H for all type and
term variables y in CH[[S]].

Then, the given inference ιPG and the constructed inference ιH are of the form (∗∗) with
C1[[S1]] = CH[[S]], C

′
2 = C ′

Hσ ∨ sHσ x ≈ s′Hσ x, S′
2 = Sσ, θ1 = θ′H, ξ = q(θ′H), ζ = θ′H, and

σ = {}.

PGExt: If ιPG is a PGExt inference

CPG uPG · θPG
PGExt

CPG wPG ∨ uPG diff⟨τ, υ⟩(uPG, wPG) ̸≈ wPG diff⟨τ, υ⟩(uPG, wPG) · ρ

then we construct a corresponding Ext or FluidExt inference ιH. Let CH ·θH = P−1
G(N)(CPG ·

θPG) and CH[[S]] = G−1
N (CH · θH). This clause CH[[S]] will be the premise of ιH. Let

LPG.sPG.pPG be the position of the green subterm uPG in CPG. Condition 1 of PGExt
states that LPG.sPG.pPG is eligible in CPG · θPG. Let LH.sH.pH be the position in CH that
Lemma 5.52 guarantees to be eligible in CH[[S]] w.r.t. any suitable σ (condition 3 of Ext
or condition 7 of FluidExt). Let uH be the subterm of CH at position LH.sH.pH. By
Lemma 5.52, one of the following cases applies.

Case 1: pPG = pH. Then we construct an Ext inference.
Condition 2 of PGExt states that uPG = uHp(θH) is of functional type. Let σ be the

most general type substitution such that uHσ is of type τ → υ for some types τ and υ
(condition 1 of Ext). Let y be a fresh variable of the same type as uHσ (condition 2 of
Ext). Let θ′H = θH[y 7→ wPGρ]. Let ζ be a substitution such that xσζ = xθ′H for all type
and term variables x in CH[[S]] and for x = y.

By condition 3 of PGExt, wPG ∈ TPG is a term whose nonfunctional yellow subterms are
different fresh variables. Then wPG and yp(θH) are equal up to renaming of variables because
p replaces the nonfunctional yellow subterms of wPGθH by distinct fresh variables. Since
the purpose of this proof is to show that ιPG is redundant, a property that is independent
of the variable names in ιPG’s conclusion, we can assume without loss of generality that
wPG = yp(θH) and θPG = q(θ′H). Then the given inference ιPG and the constructed inference
ιH are of the form (∗∗) with C1[[S1]] = CH[[S]], C

′
2 = CHσ y ∨ uHσ diff⟨τ, υ⟩(uHσ, y) ̸≈

y diff⟨τ, υ⟩(uHσ, y), S′
2 = Sσ, θ1 = θ′H, ξ = ρ, ζ = θ′H, and σ = {}.

Case 2: pPG = pH.q for some nonempty q, uH is not a variable but is variable-headed, and
uHθ is nonfunctional. Then we construct a FluidExt inference.

Lemma 5.52 tells us that sPG = sHp(θH). Thus, the subterm of sPG at position pH is
uHp(θH). So q is a green position of uHp(θH), and the subterm at that position is uPG—i.e.,
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uHp(θH) = (uHp(θH)) uPG q. Let t = λ (uHp(θH)) n q, where n is the appropriate De
Bruijn index to refer to the initial λ.

We define θ′H = θH[x 7→ uPGθPG, y 7→ wPGρ, z 7→ tθPG]. Then (z x)θ′H = (t uPG)θPG =
uHp(θH)θPG = uHp(θH)q(θH) = uHθH = uHθ

′
H. So θ′H is a unifier of z x and uH. Thus,

by definition of CSU (Definition 3.13), there exists a unifier σ ∈ CSU(z x ≡ uH) and a
substitution ζ such that xσζ = xθ′H for all relevant variables x (condition 4 of FluidExt).

By the assumption of this case, uH is not a variable but is variable-headed (condition 1
of FluidExt) and uHθ is nonfunctional (condition 2 of FluidExt).

By condition 4 of PGExt, uPGθPG ̸= wPGρ. Thus, (z x)σζ = (z x)θ′H = (t uPG)θPG =
(uHp(θH)) uPGθPG q ̸= (uHp(θH)) wPGρ q = (z y)θ′H = (z y)σζ. So, (z x)σ ̸= (z y)σ
(condition 5 of FluidExt).

Since zσζ = tθPG and tθPG ≠ λ 0 because q is nonempty, we have zσ ≠ λ 0 (condition 6
of FluidExt).

By condition 3 of PGExt, wPG ∈ TPG is a term whose nonfunctional yellow subterms
are different fresh variables. Then wPG and yp(θ′H) are equal up to renaming of variables
because p replaces the nonfunctional yellow subterms of wPGρ by distinct fresh variables.
As above, we can assume without loss of generality that yp(θ′H) = wPG and wρ = wq(θ′H) for
all variables w in CPG and in wPG, using the fact that ρ coincides with θPG on all variables
in CPG.

The inferences ιPG and ιH are of the form (∗) with C1[[S1]] = CH[[S]], C2[[S2]] =
(CH zy pH ∨ xdiff⟨α, β⟩(x, y) ̸≈ ydiff⟨α, β⟩(x, y)[[S]])σ, θ1 = θH, θ2 = ζ, E = CPG wPG pPG ∨
uPG diff⟨τ, υ⟩(uPG, wPG) ̸≈ wPG diff⟨τ, υ⟩(uPG, wPG), ξ = ρ. In the following, we elaborate
why C2p(θ2) = Eπ and xπq(θ2) = xξ for some substitution π and all variables x in E,
as required for (∗). The reasoning is similar to that in the FluidSup case. We invoke
Lemma 5.16 to obtain a substitution π such that σp(ζ) = p(σζ)π and q(σζ) = πq(ζ). Then

C2p(θ2) = (CH z y pH ∨ x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σp(ζ)
= CHσp(ζ) (z y)σp(ζ) pH ∨ (x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σp(ζ)
(1)
= (CHσp(ζ) (z x)σp(ζ) yσp(ζ) q pH ∨ (x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σp(ζ)
(2)
= (CHσp(ζ) uHσp(ζ) yσp(ζ) q pH ∨ (x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σp(ζ)
(3)
= CHσp(ζ) yσp(ζ) pPG ∨ (x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σp(ζ)
(4)
= CHσp(ζ) wPG pPG ∨ (uPG diff⟨τ, υ⟩(uPG, wPG) ̸≈ wPG diff⟨τ, υ⟩(uPG, wPG))π

= (CHp(σζ) wPG pPG ∨ uPG diff⟨τ, υ⟩(uPG, wPG) ̸≈ wPG diff⟨τ, υ⟩(uPG, wPG))π

= (CPG wPG pPG ∨ uPG diff⟨τ, υ⟩(uPG, wPG) ̸≈ wPG diff⟨τ, υ⟩(uPG, wPG))π

= Eπ

Step (1) can be justified as follows: By Lemma 5.12, zσp(ζ)q(ζ) = tθPG. Since zσp(ζ) and t
contain only nonfunctional variables, zσp(ζ) must be a λ-abstraction whose λ binds exactly
one De Bruijn index, which is located at orange position 1.q w.r.t. ↓βηlong. Thus, (z x)σp(ζ)
and (z y)σp(ζ) are identical up to the subterm at green position q, which is xσp(ζ) and
yσp(ζ) respectively. So, (z y)σp(ζ) = (z x)σp(ζ) yσp(ζ) q.

For step (2), we use that (zx)σ = uHσ. For step (3), we use that uH is the green subterm
of CH at position pH. For step (4), we use that xσp(ζ) = xp(σζ)π = xp(θ′H)π = uPGπ and
similarly yσp(ζ) = wPGπ.
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PGDiff: If ιPG is a PGDiff inference

PGDiff
u diff⟨τ, υ⟩(u,w) ̸≈ u diff⟨τ, υ⟩(u,w) ∨ u s ≈ w s · θPG

then we use the following Diff inference ιH:

Diff
y (diff⟨α, β⟩(y, z)) ̸≈ z (diff⟨α, β⟩(y, z)) ∨ y x ≈ z x︸ ︷︷ ︸

CH

Let θH be a grounding substitution with αθH = τ , βθH = υ, yθH = uθPG, and zθH = wθPG.
By condition 2 of PGDiff, u,w, s ∈ TPG are terms whose nonfunctional yellow subterms are
different fresh variables. Then u and yp(θH) are equal up to renaming of variables because p
replaces the nonfunctional yellow subterms of uθPG by distinct fresh variables. The same
holds for w and zp(θH) and for s and xp(θH). Since the purpose of this proof is to show that
ιPG is redundant, a property that is independent of the variable names in ιPG’s conclusion,
we can assume without loss of generality that u = yp(θH), w = zp(θH), s = xp(θH), and
θPG = q(θH). Then CHp(θH) = CPG and x0q(θH) = x0θPG for all variables x0 in CPG. So
ιPG and ιH have the form (∗) with C1 = CH, E = CPG, ξ = θPG, π = {}, and θ1 = θH.

5.5. Trust and Simple Redundancy. In this subsection, we define a notion of trust for
each level and connect them. Ultimately, we prove that simple redundancy (HRed⋆

C,HRed
⋆
I )

as defined in Section 3.7 implies redundancy (HRedC,HRed I) as defined in Section 5.4.4.

5.5.1. First-Order Level. In this subsubsection, let ≻ be an admissible term order for PFInf
(Definition 5.20).

Definition 5.54 (Trust). A closure C · θ ∈ CPF trusts a closure D · ρ ∈ N ⊆ CPF if the
variables in D can be split into two sets X and Y such that

1. for every literal L ∈ D containing a variable x ∈ X, there exists a variable z in a literal
K ∈ C such that xρ is a subterm of zθ and Lρ ⪯ Kθ; and

2. for all grounding substitutions ρ′ with xρ′ = xρ for all x ̸∈ Y , we have D · ρ′ ∈ N .

Lemma 5.55. Let R be a confluent term rewrite system oriented by ≻ whose only Boolean
normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. If a closure C · θ ∈ CPF trusts a closure D · ρ ∈ N ⊆ CPF and
C · θ is variable-irreducible, then there exists a closure D · ρ′ ∈ irredR(N) with D · ρ′ ⪯ D · ρ
such that R ∪ {D · ρ′} |=oλ D · ρ.

Proof. Let X and Y the sets from Definition 5.54. We define a substitution ρ′ by yρ′ = yρ↓R
for all variables y ∈ Y and xρ′ = xρ for all variables x ̸∈ Y . By condition 2 of the definition
of trust, we have D · ρ′ ∈ N . Moreover, D · ρ′ ⪯ D · ρ by (O2)PF because R is oriented by ≻.

We show that D ·ρ′ is also variable-irreducible. If a variable y is in Y , then yρ′ is reduced
w.r.t. R by definition of ρ′. If a variable x is in X, then consider an occurrence of x in a
literal L · ρ′ ∈ D · ρ′. We must show that xρ′ = xρ is irreducible w.r.t. the rules in R smaller
than L · ρ′. By condition 1, there exists a variable z in a literal K ∈ C such that xρ is a
subterm of zθ and Lρ ⪯ Kθ. Since C · θ and thus K · θ is variable-irreducible w.r.t. R, zθ is
irreducible w.r.t. the rules in R smaller than K · θ. Since Lρ′ ⪯ Lρ ⪯ Kθ and xρ = xρ′ is a
subterm of zθ, this implies that xρ′ is irreducible w.r.t. the rules in R smaller than L · ρ′.

For the Boolean condition of variable-irreducibility, we use that R’s only Boolean normal
forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
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To show that R ∪ {D · ρ′} |= D · ρ, it suffices to prove that xρ →∗
R xρ′ for all x in D. If

x is in X then xρ = xρ′ and hence xρ →∗
R xρ′. Otherwise, x is in Y and xρ′ = xρ↓R and

thus xρ →∗
R xρ′.

5.5.2. Indexed Partly Substituted Ground Higher-Order Level. In this subsubsection, let ≻
be an admissible term order for IPGInf (Definition 5.21).

The definition of trust is almost identical to the corresponding definition on the PF
level. However, we need to take into account that PF level subterms correspond to yellow
subterms on the IPG level.

Definition 5.56 (Trust). A closure C · θ ∈ CIPG trusts a closure D · ρ ∈ N ⊆ CIPG if the
variables in D can be split into two sets X and Y such that

1. for every literal L ∈ D containing a variable x ∈ X, there exists a variable z in a literal
K ∈ C such that xρ is a yellow subterm of zθ and Lρ ⪯ Kθ; and

2. for all grounding substitutions ρ′ with xρ′ = xρ for all x ̸∈ Y , we have D · ρ′ ∈ N .

Lemma 5.57. If a closure C · θ ∈ CIPG trusts a closure D · ρ ∈ N ⊆ CIPG w.r.t. ≻, then
F (C · θ) trusts F (D · ρ) ∈ F (N) w.r.t. ≻F .

Proof. Assume C · θ trusts D · ρ. Thus, the variables of D can be split into two sets X and
Y such that conditions 1 and 2 of the definition of trust are satisfied. Note that the variables
of D and F (D) coincide. We claim that F (C · θ) trusts F (D · ρ) via the variable sets X
and Y .

Let F (L) ∈ F (D) be a literal containing a variable x ∈ X. Then L ∈ D contains x as
well. By the definition of trust (Definition 5.56), there exists a variable z in some literal
K ∈ C such that xρ is a yellow subterm of zθ and Lρ ⪯ Kθ. It holds that F (L) ∈ F (D) is a
literal containing x ∈ X. Since xρ is a yellow subterm of zθ we have that F (xρ) is a subterm
of F (zθ). Moreover, we have F (Lρ) ⪯F F (Kθ). Hence, condition 1 of Definition 5.54 is
satisfied.

It remains to show that also condition 2 of Definition 5.54 holds—i.e., that for any
grounding substitution ρ′ with xρ′ = xF (ρ) for all x ̸∈ Y , we have F (D) · ρ′ ∈ F (N).
We define a substitution ρ′′ : x 7→ F −1(ρ′(x)). Since F −1 maps ground terms to ground
terms, ρ′′ is grounding. Moreover, since F is bijective on ground terms, xρ′′ = F −1(ρ′(x)) =
F −1(xF (ρ)) = xρ for all x ̸∈ Y . By the definition of trust (Definition 5.56), D · ρ′′ ∈ N and
therefore F (D) · ρ′ = F (D · ρ′′) ∈ F (N).

Lemma 5.58. Let R be a confluent term rewrite system on TPF oriented by ≻F whose
only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. If a closure C · θ ∈ CIPG trusts a closure
D ·ρ ∈ N ⊆ CIPG and C ·θ is variable-irreducible, then there exists a closure D ·ρ′ ∈ irredR(N)
with F (D · ρ′) ⪯F F (D · ρ) such that R ∪ {F (D · ρ′)} |=oλ F (D · ρ).

Proof. By Lemma 5.57, F (C · θ) trusts F (D · ρ) ∈ F (N). By Lemma 5.55, there exists
a closure D0 · ρ′0 ∈ irredR(F (N)) = F (irredR(N)) with D0 · ρ′0 ⪯F F (D · ρ) such that
R ∪ {D0 · ρ′0} |=oλ F (D · ρ). Thus, there must exist a closure D · ρ′ ∈ irredR(N) with
F (D · ρ′) ⪯F F (D · ρ) such that R ∪ {F (D · ρ′)} |=oλ F (D · ρ).
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5.5.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let ≻ be an
admissible term order for PGInf (Definition 5.22).

As terms can also contain parameters we also need to account for this case in the
definition of trust for the PG level. Specifically, we must add a condition that the variables
in Y may not appear in parameters in the trusted closure.

Definition 5.59 (Trust). A closure C · θ ∈ CPG trusts a closure D · ρ ∈ N ⊆ CPG if the
variables in D can be partitioned into two sets X and Y such that

1. for every literal L ∈ D containing a variable x ∈ X outside of parameters, there exists
a literal K ∈ C containing a variable z outside of parameters such that xρ is a yellow
subterm of zθ and Lρ ⪯ Kθ; and

2. all variables in Y do not appear in parameters in D and for all grounding substitutions
ρ′ with xρ′ = xρ for all x ̸∈ Y , D · ρ′ ∈ N .

Lemma 5.60. If a closure C · θ ∈ CPG trusts a closure D · ρ ∈ N ⊆ CPG w.r.t. ≻, then
J (C · θ) trusts J (D · ρ) ∈ J (N) w.r.t. ≻J .

Proof. Let C · θ ∈ CPG and D · ρ ∈ CPG such that C · θ trusts D · ρ. Thus, the variables of D
can be partitioned into two sets X and Y such that conditions 1 and 2 of the definition of
trust are satisfied. Let X ′ be the set X without the variables that only occur in parameters
in D. We claim that J (C · θ) trusts J (D · ρ) using the sets X ′ and Y that split the variables
in J (D · ρ).

Since the parameters disappear after the application of the transformation J , the set
X ′ ∪ Y contains all variables occurring in J (D · ρ). As all the other variables are preserved
by J we have that X ′ and Y are partition of the variables in J (D · ρ).

Let Jρ(L) ∈ Jρ(D) be a literal containing a variable x ∈ X. Then L ∈ D contains
x ∈ X ′ ⊆ X outside of parameters. By Defintion 5.59, there exists a literal K ∈ C
containing a variable z outside of parameters such that xρ is a yellow subterm of zθ and
Lρ ⪯ Kθ. It holds that Jρ(K) ∈ Jρ(D) is a literal containing x ∈ X. Since xρ is a yellow
subterm of zθ, we have that J (xρ) is a yellow subterm of J (zθ), since J preserves yellow
subterms. Then, by Lemma 5.9, Jρ(x)J (ρ) is a yellow subterm of Jθ(z)J (θ). Moreover, we
have Jρ(K)J (ρ) = J (Kρ) ⪯J J (Lθ) = Jρ(L)J (θ) again using Lemma 5.9. Hence, condition 1
of Definition 5.56 is satisfied.

Let ρ′ be a grounding substitution on the IPG level with xρ′ = xJ (ρ) for all x ̸∈ Y .
Since J (D · ρ) = Jρ(D) · J (ρ), we must show that Jρ(D) · ρ′ ∈ J (N). Since ρ′ is a grounding
substitution and J is a bijection on ground terms, there exists a substitution ρ′′ = J−1(ρ′).
This substitution ρ′′ is grounding and xρ′′ = J−1(xρ′) = J−1(J (xρ)) = xρ for all x ̸∈ Y .
Since C ·θ trusts D ·ρ, we have D ·ρ′′ ∈ N and thus Jρ′′(D) · I(ρ′′) = J (D ·ρ′′) ∈ J (N). Since
the variables in Y do not occur in parameters in D, we have Jρ′′(D) = Jρ(D). Moreover,
J (ρ′′) = ρ′. Hence, condition 2 of Definition 5.56 is satisfied.

Lemma 5.61. Let R be a confluent term rewrite system on TPF oriented by ≻JF whose
only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. If a closure C · θ ∈ CPG trusts a closure D · ρ ∈
N ⊆ CPG and C · θ is variable-irreducible, then there exists a closure D · ρ′ ∈ irredR(N) with
F (J (D · ρ′)) ⪯JF F (J (D · ρ)) such that R ∪ {F (J (D · ρ′))} |=oλ F (J (D · ρ)).
Proof. By Lemma 5.60, J (C · θ) trusts J (D · ρ) ∈ J (N). By Lemma 5.58, there exists a
closure D0 · ρ′0 ∈ irredR(J (N)) = J (irredR(N)) with F (D0 · ρ′0) ⪯ F (J (D · ρ)) such that
R ∪ {F (D0 · ρ′0)} |=oλ F (J (D · ρ)). Thus, there must exist a closure D · ρ′ ∈ irredR(N) with
F (J (D · ρ′)) ⪯ F (J (D · ρ)) such that R ∪ {F (J (D · ρ′))} |=oλ F (J (D · ρ)).
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5.5.4. Full Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
(Definition 3.16), extended to be an admissible term order for PGInf as in Section 5.4.4.
We have defined trust for level H in Defintion 3.27.

Lemma 5.62. Let C[[S]] ∈ CH and D[[T ]] ∈ N ⊆ CH. Let Cθ ∈ Gnd(C[[S]]) and Dρ ∈
Gnd(D[[T ]]). If the θ-instance of C[[S]] trusts the ρ-instance of D[[T ]], then P (C · θ) trusts
P (D · ρ) ∈ PG(N).

Proof. Let X and Y be a partition of the variables in D such that the variables in X fulfill
condition (i) and the variables in Y fulfill condition (ii). Let X ′ be the set of variables
occurring in P (D · ρ) originating from xp(ρ) for some x ∈ X. Define the set Y ′ analogously.
We claim that P (C · θ) trusts P (D · ρ) using the sets X ′ and Y ′. It holds that X ′ and Y ′

are a partition of the variables in P (D · ρ).

Regarding X ′: We need to show that for every literal L′ ∈ Dp(ρ) containing a variable
x′ ∈ X ′ outside of parameters, there exists a literal K ′ ∈ Cp(θ) containing a variable z′

outside of parameters such that x′q(ρ) is a yellow subterm of z′q(θ) and L′q(ρ) ⪯ K ′q(θ).
Any literal L′ ∈ Dp(ρ) containing a variable x′ ∈ X ′ outside of parameters must originate

from a literal L ∈ D containing a variable x ∈ X outside of parameters, where L′ = Lp(ρ)
and x′ occurs in xp(ρ). By condition (i) of Definition 3.27, this implies that there exists a
literal K ∈ C and a substitution σ such that zθ = zσρ for all variables z in C and L ⪯ Kσ.

By (O10) with the substitution p(ρ), since x′ occurs outside of parameters of L′ =
Lp(ρ) = Lp(ρ), it also occurs outside of parameters of Kσp(ρ).

By Lemma 5.16, there exists a substitution π such that σp(ρ) = p(σρ)π and q(σρ) =
πq(ρ). So Kσp(ρ) = Kp(σρ)π = Kp(θ)π and x′ occurs outside of parameters in this literal.
Since Kp(θ) contains only nonfunctional variables, there exists a variable z′ occurring outside
of parameters in Kp(θ) such that x′ is a yellow subterm of z′π. Thus, x′q(ρ) is a yellow
subterm of z′πq(ρ) = z′q(σρ) = z′q(θ), which is what we needed to show.

Regarding Y ′: We must show that for all grounding substitutions ρ′ with xρ′ = xq(ρ) for
all x ̸∈ Y ′, we have Dp(ρ) · ρ′ ∈ PG(N).

Let ρ′ be a substitution with xρ′ = xq(ρ) for all x ̸∈ Y ′. Then, for all variables x ̸∈ Y ,
we have xp(ρ)ρ′ = xq(ρ)q(ρ) = xρ by Lemma 5.12. By condition (ii) of Definition 3.27, the
variables in Y do not appear in the constraints T of D[[T ]]. So, Tp(ρ)ρ′ = Tρ and thus p(ρ)ρ′

is true. Therefore, D · p(ρ)ρ′ ∈ G(N) and P (D · p(ρ)ρ′) ∈ PG(N). By Lemma 5.13 and 5.14,
P (D · p(ρ)ρ′) = Dp(p(ρ)ρ′) · q(p(ρ)ρ′) = Dp(ρ) · ρ′ because xρ′ = xq(ρ) for all x ̸∈ Y ′ and in
particular for all x not introduced by p(ρ). Therefore, Dp(ρ) · ρ′ ∈ PG(N).

A variable in yp(ρ) can occur in a parameter in P (D · ρ) only if the variable y occurs in
a parameter in D. Since all variables in Y do not appear in parameters, the variables in Y ′

do not appear in parameters either.

Lemma 5.63. Let R be a confluent term rewrite system on TPF oriented by ≻JF whose
only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let C[[S]] ∈ CH and D[[T ]] ∈ N ⊆ CH. Let
Cθ ∈ Gnd(C[[S]]) and Dρ ∈ Gnd(D[[T ]]). If the θ-instance of C[[S]] trusts the ρ-instance of
D[[T ]] and C · θ is variable-irreducible, then there exists a closure D · ρ′ ∈ irredR(G(N)) with
F (J (P (D · ρ′))) ⪯JF F (J (P (D · ρ))) such that R ∪ {F (J (P (D · ρ′)))} |=oλ F (J (P (D · ρ))).

Proof. By Lemma 5.62, J (C · θ) trusts P (D · ρ) ∈ PG(N). By Lemma 5.61, there exists
a closure D0 · ρ′0 ∈ irredR(P (N)) = P (irredR(N)) with F (J (D0 · ρ′0)) ⪯JF F (J (P (D · ρ)))
such that R ∪ {F (J (D0 · ρ′0))} |=oλ F (J (P (D · ρ))). Thus, there must exist a closure
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D · ρ′ ∈ irredR(N) with F (J (P (D · ρ′))) ⪯JF F (J (P (D · ρ))) such that R ∪ {F (J (P (D ·
ρ′)))} |=oλ F (J (P (D · ρ))).

Lemma 5.64. Let N ⊆ CH. Then HRed⋆
C(N) ⊆ HRedC(N).

Proof. Let C[[S]] ∈ HRed⋆
C(N). Let R be a confluent term rewrite system on TF oriented

by ≻JF whose only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let C ′ · θ′ ∈ irredR(FJPG(C[[S]])),
i.e, there exists some Cθ ∈ Gnd(C[[S]]) such that FJP (C · θ) = C ′ · θ′. By Lemma 5.17,
F (Cθ) = C ′θ′.

We make a case distinction on which condition of Definition 3.28 applies to Cθ ∈
Gnd(C[[S]]).

Condition 1: There exist an indexing set I and for each i ∈ I a ground instance Diρi of a
clause Di[[Ti]] ∈ N , such that

(a) F ({Diρi | i ∈ I}) |=oλ F (Cθ);
(b) for all i ∈ I, Diρi ≺ Cθ; and
(c) for all i ∈ I, the θ-instance of C[[S]] trusts the ρi-instance of Di[[Ti]].

We show that C[[S]] ∈ HRedC(N) by condition 1 of Definition 5.46, i.e., we show that

R ∪ {E ∈ irredR(FJPG(N)) | E ≺JF C ′θ′} |=oλ C ′θ′

By Lemma 5.63 and point (c) above, there exists a closure D′
i · ρ′i ∈ irredR(FJPG(N)) with

D′
i · ρ′i ⪯JF F (J (P (Di · ρi))) such that R ∪ {D′

i · ρ′i} |=oλ F (J (P (Di · ρi))). By Lemma 5.17,
D′

iρ
′
i ⪯JF F (Diρi) and R ∪ {D′

iρ
′
i} |=oλ F (Diρi). With point (a) above, it follows that

R ∪ {D′
iρ

′
i | i ∈ I} |=oλ F (Cθ)

It remains to show that D′
iρ

′
i ≺JF F (Cθ) for all i ∈ I. Since D′

iρ
′
i ⪯JF F (Diρi), it suffices

to show that F (Diρi) ≺JF F (Cθ). This follows from point (b) above, Lemma 5.17, and
Definitions 5.28 and 5.37.

Condition 2: There exists a ground instance Dρ of some D[[T ]] ∈ N such that

(a) Dρ = Cθ;
(b) C[[S]] ⊐ D[[T ]]; and
(c) the θ-instance of C[[S]] trusts the ρ-instance of D[[T ]].

By Lemma 5.63 and point (c) above, there exists a closure D′ · ρ′ ∈ irredR(FJPG(N)) with
D′ · ρ′ ⪯JF F (J (P (D · ρ))) such that R ∪ {D′ · ρ′} |=oλ F (J (P (D · ρ))).

We distinguish two subcases.

Case 1: D′ ·ρ′ = F (J (P (D ·ρ))). Then we can show that C[[S]] ∈ HRedC(N) by condition 2
of Definition 5.46, using points (a) and (b) above and Lemma 5.17.

Case 2: D′ · ρ′ ≺JF F (J (P (D · ρ))). Then we show that C[[S]] ∈ HRedC(N) by condition 1
of Definition 5.46—i.e.,

R ∪ {E ∈ irredR(FJPG(N)) | E ≺JF C ′θ′} |=oλ C ′θ′

Since C ′θ′ = F (Cθ) = F (Dρ) = TFJP (D · ρ) by point (a) above and Lemma 5.17, it suffices
to show

R ∪ {E ∈ irredR(FJPG(N)) | E ≺JF FJP (D · ρ)} |=oλ FJP (D · ρ)
This follows directly from the three defining properties of D′ · ρ′ above.

Lemma 5.65. Let N ⊆ CH. Then HRed⋆
I (N) ⊆ HRed I(N).
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Proof. Let ι ∈ HRed⋆
I (N). Let C1[[S1]], . . . , Cm[[Sm]] be its premises and Cm+1[[Sm+1]]

its conclusion. Let θ1, . . . , θm+1 be a tuple of substitutions for which ι is rooted in FInf
(Definition 3.31). Since ι ∈ HRed⋆

I (N), by Definition 3.32, there exists an indexing set I and
for each i ∈ I a ground instance Diρi of a clause Di[[Ti]] ∈ N , such that

1. F ({Diρi | i ∈ I}) |=oλ F (Cm+1θm+1);
2. ι is a Diff inference or for all i ∈ I, Diρi ≺ Cmθm; and
3. for all i ∈ I, the θm+1-instance of Cm+1[[Sm+1]] trusts the ρi-instance of Di[[Ti]].

By Definition 5.47, we must show that for all confluent term rewrite systems R oriented
by ≻JF whose only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that Cm+1 · θm+1 is variable-
irreducible, we have

R ∪O |=oλ F (Cm+1θm+1)

where O = irredR(FJPG(N)) if ι is a Diff inference and O = {E ∈ irredR(FJPG(N)) |
E ≺JF F (Cmθm)} otherwise.

By Lemma 5.63 and point 3 above, there exists a closure D′
i ·ρ′i ∈ irredR(FJPG(N)) with

D′
i · ρ′i ⪯JF F (J (P (Di · ρi))) such that R ∪ {D′

i · ρ′i} |=oλ F (J (P (Di · ρi))). By Lemma 5.17,
D′

iρ
′
i ⪯JF F (Diρi) and R ∪ {D′

iρ
′
i} |=oλ F (Diρi). With point 1 above, it follows that

R ∪ {D′
iρ

′
i | i ∈ I} |=oλ F (Cm+1θm+1)

If ι is a Diff inference, we are done. For the other inferences, it remains to show that
D′

iρ
′
i ≺JF F (Cmθm) for all i ∈ I. Since D′

iρ
′
i ⪯JF F (Diρi), it suffices to show that

F (Diρi) ≺JF F (Cmθm). This follows from point 2 above, Lemma 5.17, and Definitions 5.28
and 5.37.

5.6. Model Construction. In this subsection, we construct models of saturated clause
sets, starting with a first-order model and lifting it through the levels. Using the results of
Section 5.4, we prove a completeness property for each of the calculi that roughly states the
following. For any saturated set N∞ that does not contain an empty closure, there exists a
term rewrite system R and a corresponding interpretation I such that I is a model of the
closures in N∞ that are variable-irreducible w.r.t. R.

Moreover, to prepare the eventual extension the model of the variable-irreducible
instances to all instances, for each level, we show a property that roughly states the following:
For any set of closures N0 that contains all closures of the form C · ρ for all ρ whenever it
contains a closure C · θ, then the variable-irreducible instances of N0 entail all of N0.

Finally, in level H, we bring everything together by showing that the constructed model
is also a model of the variable-irreducible ground instances of N0 and thus of N0 itself. It
follows that the calculus HInf is refutationally complete.

5.6.1. First-Order Levels. In this subsubsection, let ≻ be an admissible term order for
PFInf (Definition 5.20), and let pfsel be a selection function on CPF (Definition 5.18).

The completeness proof for PFInf relies on constructing a first-order term rewrite
system. For any first-order term rewrite system R, there exists a first-order interpretation,
which we also denote R, such that R |=fol s ≈ t if and only if s ↔∗

R t. Formally, this can be
implemented by a first-order interpretation whose universe for each type τ consists of the
R-equivalence classes of ground terms of type τ .
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Definition 5.66 (RN ). Let N be a set of ground first-order closures with ⊥ ̸∈ T (N). By
well-founded induction, we define term rewrite systems Re and ∆e for all ground clauses and
ground terms e ∈ TF ∪ CF and finally a term rewrite system RN . As our well-founded order
on TF ∪ CF, we employ our term and clause order ≻. To compare terms with clauses, we
define a term s to be larger than a clause C if and only if s is larger than every term in C.
Formally, this can be defined using the clause order by Bachmair and Ganzinger [1, Sect. 2.4]
and encoding a term s as the multiset {{{s}}}.
(∆1) Logical Boolean rewrites: Given a term s, let ∆s = {s → t} if

– (s, t) is one of the following:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ u,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) with u ̸= v

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ u,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ v,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) with u ̸= v

– s is irreducible w.r.t. Rs.
(∆2) Backstop Boolean rewrites: Given a clause C, let ∆C = {s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} if

– C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
– s /∈ {⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤};
– s is irreducible w.r.t. RC .

(∆3) Function rewrites: Given a clause C, let ∆C = {F (u) → F (w)} if
– C = F (u) ≈ F (w) for functional terms u and w;
– F (u) ≻ F (w)
– F (u diffτ,υ

s,t ) ↔∗
RC

F (v diffτ,υ
s,t ) for all s, t;

– F (u) is irreducible w.r.t. RC .
(∆4) Produced rewrites: Given a clause C, let ∆C = {s → t} if

(CC1) there exists a closure C0 · θ ∈ N such that C = C0θ;
(CC2) C0 · θ is variable-irreducible w.r.t. RC ;
(CC3) C = C ′ ∨ s ≈ t for some clause C ′ and terms s and t;
(CC4) s is nonfunctional;
(CC5) the root of s is not a logical symbol;
(CC6) if t is Boolean, then t = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(CC7) s ≻ t;
(CC8) s ≈ t is maximal in C;
(CC9) there are no selected literals in C0 · θ;
(CC10) s is irreducible by RC ;
(CC11) RC ̸|=fol C;
(CC12) RC ∪ {s → t} ̸|=fol C

′.
In this case, we say that C0 · θ produces s → t and that C0 · θ is productive.

(∆5) For all other terms and clauses e, Let ∆e = ∅.
Let Re =

⋃
f≺e∆f . Let RN =

⋃
e∈TF∪CF

∆e.

Lemma 5.67. The rewrite systems RC and RN do not have critical pairs and are oriented
by ≻.

Proof. It is easy to check that all rules in RC and RN are oriented by ≻, using (O4)PF.
To show the absence of critical pairs, suppose that there exists a critical pair s → t and

s′ → t′ in RN , originating from ∆e and ∆e′ respectively, for some e, e′ ∈ TF ∪ CF. Without
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loss, we assume e ≻ e′. Inspecting the rules of Definition 5.66, it follows that s ⪰ s′. By the
subterm property (O3)PF, s cannot be a proper subterm of s′. So for the rules to be a critical
pair, s′ must be a subterm of s. But then s is not irreducible by ∆e′ ⊆ Re, contradicting
the irreducibility conditions of Definition 5.66.

Lemma 5.68. The normal form of any ground Boolean term w.r.t. RN is ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Proof. Inspecting the rules of Definition 5.66, in particular (CC5), we see that ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ are
irreducible w.r.t. RN .

It remains to show that any ground Boolean term s reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We prove the
claim by induction on s w.r.t. ≻. If s = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or s = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, we are done. Otherwise, consider the
rule (∆2) for C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Either s is reducible by RC or (∆2) triggers, making s reducible
by ∆C . In both cases, s is reducible by RN . Let s′ be the result of reducing s by RN . By
Lemma 5.67, s ≻ s′. By the induction hypothesis, s′ reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Therefore, s reduces
to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Lemma 5.69. For all ground clauses C, if RC |=fol C, then RN |=fol C.

Proof. We assume that RC |=fol C. Then we have RC |=fol L for some literal L of C. It
suffices to show that RN |=fol L.

If L = t ≈ t′ is a positive literal, then t ↔∗
RC

t′. Since RC ⊆ RN , this implies t ↔∗
RN

t′.

Thus, RN |=fol L.
If L = t ̸≈ t′ is a negative literal, then t ̸↔∗

RC
t′. By Lemma 5.67, this means that t and

t′ have different normal forms w.r.t. RC . Without loss of generality, let t ≻ t′. Let s ≈̇ s′ be
the maximal literal in C with s ⪰ s′. We have s ≻ t if s ≈̇ s′ is positive and s ⪰ t if s ≈̇ s′

is negative. Hence, inspecting Definition 5.66, we see that the left-hand sides of rules in⋃
e⪰C ∆e are larger than t. Since only rules with a left-hand side smaller or equal to t can

be involved in normalizing t and t′ and RC ∪
⋃

e⪰C ∆e = RN , it follows that t and t′ have

different normal forms w.r.t. RN . Therefore, t ̸↔∗
RN

t′ and RN |=fol L.

Lemma 5.70. If a closure C0 = C ′
0 ∨ s0 ≈ t0 · θ ∈ CPF produces s0θ → t0θ, then RN ̸|=fol

C ′
0θ.

Proof. Let C = C0θ, C
′ = C ′

0θ, s = s0θ, and t = t0θ. By (CC7) and (CC8), all terms in
C are smaller or equal to s. By (CC12), we have RC ∪ {s → t} ̸|= C ′. The other rules
RN \ (RC ∪ {s → t}) do not play any role in the truth of C because their left-hand sides are
greater than s, as we can see by inspecting the rules of Definition 5.66, in particular the
irreducibility conditions, and because RN is confluent and terminating (Lemma 5.67). So,
RC ∪ {s → t} ̸|=fol C

′ implies RN ̸|=fol C
′.

Lemma 5.71. If C · θ ∈ CPF is productive, then it is variable-irreducible w.r.t. RN .

Proof. Let s → t be the rule produced by C · θ. By (CC2), C · θ is variable-irreducible
w.r.t. RC . Let s′ → t′ ∈ RN \ RC . Then s′ ≈ t′ ∈ ∆e for some e ∈ TF ∪ CF that is larger
than Cθ. So if e is a term, then s′ = e ≻ s and thus s′ ≈ t′ ≻ s ≈ t. If e is a clause, then
its maximal literal (which is s′ ≈ t′ by (∆2), (∆3), and (CC8)) is at least as large as C’s
maximal literal (which is s ≈ t by (CC8)). So in either case, s′ ≈ t′ ⪰ s ≈ t. Since s ≈ t is
the maximal literal of Cθ, s′ ≈ t′ is at least as large as each literal of Cθ. So the rule s′ ≈ t′

has no effect on the variable-irreducibility of C · θ by Definition 5.24. Therefore, C · θ is
variable-irreducible w.r.t. RN .
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Lemma 5.72. Let u and w be higher-order ground terms of type τ → υ. If F (u) ↔∗
RN

F (w),

then F (u diffτ,υ
s,t ) ↔∗

RN
F (w diffτ,υ

s,t ) for all s, t.

Proof. By induction over each rewrite step in F (u) ↔∗
RN

F (w), it suffices to show the

following claim: If F (u) →RN
F (w), then F (u diffτ,υ

s,t ) ↔∗
RN

F (w diffτ,υ
s,t ) for all s, t. Here, it

is crucial that s and t are not necessarily equal to u and w.
If the rewrite position is in a proper subterm of F (u), by definition of F , the rewrite

position corresponds to a proper yellow subterm of u. Yellow subterms of a functional term
remain when applying the term to an argument. So the same rewrite step can be applied to
obtain F (u diffτ,υ

s,t ) →RN
F (w diffτ,υ

s,t ).
For a rewrite in the root of the term, the rewrite rule must originate from (∆3) because

the terms are functional. One of the conditions of (∆3) then yields the claim.

Lemma 5.73. Let u and w be higher-order ground terms of type τ → υ. If F (udiffτ,υ
s,t ) ↔∗

RN

F (w diffτ,υ
s,t ) for all s, t, then F (u) ↔∗

RN
F (w).

Proof. Let F (u′) = F (u) ↓RN
and F (w′) = F (w) ↓RN

. By applying Lemma 5.72 to
F (u) ↔∗

RN
F (u′) and to F (w′) ↔∗

RN
F (w), we have F (u′ diffτ,υ

s,t ) ↔∗
RN

F (w′ diffτ,υ
s,t ) for all

s, t.
We want to show that F (u) ↔∗

RN
F (w)—i.e., that F (u′) = F (w′). To derive a

contradiction, we assume that F (u′) ̸= F (w′). Without loss of generality, we may assume
that F (u′) ≻ F (w′). Then, using (O5)PF, all conditions of (∆3) are satisfied for the rule
F (u′) → F (w′), contradicting the fact that F (u′) is a normal form.

Lemma 5.74. RN is a |=oλ-interpretation.

Proof. We must prove all conditions listed in Section 3.7.

– By Lemma 5.68, the Boolean type has exactly two elements, namely the interpretations
of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The rule (∆1) ensures that the symbols ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ , ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈τ are interpreted
as the corresponding logical operations. Note that Rs never contains any rules rewriting s
because s is smaller than any clause containing s. So s can be reducible w.r.t. Rs only
when one of its proper subterms is reducible. Since every term has a normal form, adding
rules only for the irreducible terms is sufficient.

– By Lemma 5.11, we have F (J (u) diffτ,υ
s,t ) = F (u diff⟨τ, υ⟩(s, t)) for all u, s, t ∈ Tground(ΣH).

Since J is a bijection on ground terms, Lemma 5.73 proves the extensionality condition in
Section 3.7.

– The argument congruence condition in Section 3.7 follows from Lemma 5.72 in the same
way.

Lemma 5.75. If the premises of an inference are variable-irreducible w.r.t. a ground rewrite
system R with R ⊆ ≻ and the inference is not a PFExt or PFDiff inference, then the
conclusion is also variable-irreducible w.r.t. R.

Proof. Let C0 · θ be the conclusion of the inference. By Definition 5.24, we have to show
that for all literals L · θ of C0 · θ and all variables x of L, xθ is is irreducible w.r.t. all rules
l → r ∈ R with Lθ ≻ l ≈ r and all Boolean subterms of xθ are either ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since the
premises of the infererence are variable-irreducible, this is evident for all literals that occur
also in one of the premises. The Boolean subterm condition is satisfied for all inferences
because no inference other than PFExt and PFDiff introduces a variable that is not
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present in the premises. It remains to check the the irreducibility condition for newly
introduced literals in C0 · θ.

For PFSup inferences, the only newly introduced literal has the form L[t′] · θ, where
L[u] · θ is a literal of the second premise and (t ≈ t′) · θ is a literal in the first premise with
tθ = uθ and tθ ≻ t′θ. Let x be a variable in L[t′]. If x occurs in t′, then xθ is irreducible
w.r.t. all rules l → r ∈ R with tθ ≈ t′θ ≻ l ≈ r since the first premise is variable-irreducible
w.r.t. R. On the other hand, xθ must also be irreducible w.r.t. all rules l → r ∈ R with
tθ ≈ t′θ ⪯ l ≈ r, since then l ⪰ tθ ≻ t′θ ⪰ xθ. Therefore, xθ is irreducible w.r.t. all rules
l → r ∈ R. If x occurs in L[t′] but not in t′, then it occurs in L[u], and because the second
premise is variable-irreducible w.r.t. R, xθ is irreducible w.r.t. all rules l → r ∈ R with
L[u]θ ≻ l ≈ r. Since L[t′]θ ≺ L[u]θ, xθ is also irreducible w.r.t. all rules l → r ∈ R with
L[t′]θ ≻ l ≈ r.

For all other inferences, it is easy to verify that whenever a variable x occurs in a
newly introduced literal L · θ in the conclusion, then x occurs also in a literal L′ · θ in
the premise with Lθ ⪯ L′θ, so the premise’s variable-irreducibility implies the conclusion’s
variable-irreducibility.

We employ a variant of Bachmair and Ganzinger’s framework of reducing counter-
examples [2, Sect. 4.2]. Let N ⊆ CPF with ⊥ ̸∈ T (N). A closure C0 · θ ∈ CPF is called
a counterexample if it is variable-irreducible w.r.t. RN and RN ̸|=fol C0 · θ. An inference
reduces a counterexample C0 · θ if its main premise is C0 · θ, its side premises are in N and
true in RN , and its conclusion is a counterexample smaller than C0 · θ. An inference system
has the reduction property for counterexamples if for all N ⊆ CPF and all counterexamples
C0 · θ ∈ N , there exists an inference from N that reduces C0 · θ.

Lemma 5.76. Let C0 ·θ ∈ N be a counterexample. Let L0 be a literal in C0 ·θ that is eligible
and negative or strictly eligible and positive. Let C = C0θ and L = L0θ. We assume that
the larger side of L is reducible by a rule s → s′ ∈ RC . Then the inference system PFInf
reduces the counterexample C0 · θ.

Proof. Let p be the position of C that is located at the larger side of L and reducible by
s → s′.

First, we claim that p is not at or below a variable position of C0 and thus s = s0θ for a
subterm s0 of C0 that is not a variable.

To see this, assume for a contradiction that p is at or below a variable position of C0,
i.e., there is a variable x in C such that s is a subterm of xθ.

If s were Boolean, then s must be ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by variable-irreducibility, contradicting the
fact that s → s′ ∈ RC because Definition 5.66 does not produce rules rewriting ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

So s is not a Boolean term. Then, by the rules of Definition 5.66, s → s′ ∈ RC implies
that C ⪰ s ≈ s′. By variable-irreducibility, since s is a subterm of xθ, L ⪯ s ≈ s′, where
L is the literal of C containing position p. Since L contains s, it follows that L must be
positive and its larger side must be s. Since p is eligible and s is not a Boolean term, L must
be the maximal literal of C. So, since C ⪰ s ≈ s′ and L ⪯ s ≈ s′, we have L = s ≈ s′. But
this contradicts this lemma’s assumption that RN ̸|=fol C.

This concludes the proof of our claim that s = s0θ for a subterm s0 of C0 that is not a
variable.

If the subterm s at position p is not a green subterm of C, then it must be contained
in functional green subterm t of C. Let q be the position of t in C. Since p is eligible in
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C0 · θ, q is also eligible in C0 · θ. Let t′ the normal form of t w.r.t. RN . Let u = F −1(t)
and w = F −1(t′). Then F (u) ↔∗

RN
F (w). By Lemma 5.72, F (u diffτ,υ

u,w) ↔∗
RN

F (w diffτ,υ
u,w).

Since t contains s, it is reducible w.r.t. RN , and thus F (u) = t ≻ t′ = F (w). Thus, we
can apply PFExt to reduce the counterexample. To fulfill the conditions of PFExt on
w, we must replace the nonfunctional yellow subterms of w by fresh variables and choose ρ
accordingly. Given the above properties of RN , the conclusion of this inference is equivalent
to the premise. It is also smaller than the premise by (O5)PF and because F (u) ≻ F (w).

It remains to show that the conclusion is variable-irreducible. First, consider one of the
fresh variables introduced to replace the nonfunctional yellow subterms of w. Since yellow
subterms in w correspond to subterms in t′, and t′ is a normal form, xρ is irreducible w.r.t.
RN . Next, consider a variable x that occurs in a literal L · θ in the conclusion but is not one
of the fresh variables. Then x occurs also in a literal L′ ·θ in the premise C0 ·θ with Lθ ⪯ L′θ.
Since C0 · θ is variable-irreducible, this shows that the conclusion is variable-irreducible.

Otherwise, s is a green subterm of C. Then we make a case distinction on which case of
Definition 5.66 the rule s → s′ originates from:

– (∆1) Then the root of s is a logical symbol and s /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. By Lemma 5.68, RN reduces
s to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. By our claim above, s0 is not a variable and since s = s0θ, s0 has a logical
symbol at its root.
– First consider the case where the position p in C is in a literal of the form s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or

s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then PFClausify is applicable to C0 · θ and the conclusion of this inference is
smaller than it. Moreover, the conclusion is equivalent to C0 · θ by Lemma 5.74 and
variable-irreducible by Lemma 5.75 .

– Otherwise, we apply either PFBoolHoist (if s0 reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) or PFLoobHoist (if
s0 reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤). In both cases, the conclusion of the inference is smaller than C0 · θ.
Moreover, the conclusion is equivalent to C0 · θ by Lemma 5.74 and variable-irreducible
by Lemma 5.75 .

– (∆2) Then RN reduces s to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and s /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. Due to the presence of the rule s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ in
RC , C must be larger than s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. So, since p is eligible in C, this position cannot be in a
literal of the form s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. It cannot be in a literal of the form s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ either because s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
is true in RN . So we can apply PFBoolHoist to reduce the counterexample, again using
Lemma 5.74 and Lemma 5.75.

– (∆3) Then s is functional and reducible w.r.t. RN . Then we can proceed as in the PFExt
case above, using s in the role of t.

– (∆4) Then some closure D0 ∨ t ≈ t′ · ρ with (D0 ∨ t ≈ t′)ρ = D ∨ s ≈ s′ smaller than C
produces the rule s → s′. We claim that the counterexample C is reduced by the inference

D0 ∨ t ≈ t′ · ρ C0 s0 · θ
PFSup

D0 ∨ C0 t′ · (ρ ∪ θ)

This superposition is a valid inference:
– tρ = s = s0θ.
– By our claim above, s0 is not a variable.
– s0 is nonfunctional by (CC4).
– We have s ≻ s′ by (CC7).
– D ∨ s ≈ s′ ≺ C[s] because D ∨ s ≈ s′ produces a rule in RC .
– The position p of s in C0 · θ is eligible by assumption of this lemma.
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– The literal t ≈ t′ is eligible in (D0 ∨ t ≈ t′) · ρ by (CC8) and (CC9). It is strictly eligible
because if s ≈ s′ also occurred as a literal inD, we would have RD∨s≈s′∪{s → s′} |=fol D,
in contradiction to (CC12).

– If t′ρ is Boolean, then t′ρ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (CC6).
As D0 ∨ t ≈ t′ · ρ is productive, RN ̸|=fol D by Lemma 5.70. Hence D ∨ C [s′] is
equivalent to C [s′], which is equivalent to C [s] w.r.t. RN . Moreover, (D0 ∨ t ≈ t′) · ρ is
variable-irreducible by Lemma 5.71. So D ∨ C [s′] is variable-irreducible by Lemma 5.75.
It remains to show that the new counterexample D ∨ C [s′] is strictly smaller than C.
Using (O2)PF, C[s′] ≺ C because s′ ≺ s and D ≺ C because D ∨ s ≈ s′ ≺ C. Thus, the
inference reduces the counterexample C.

Lemma 5.77. The inference system PFInf has the reduction property for counterexamples.

Proof. Let C0 · θ ∈ N be a counterexample—i.e., a closure in irredRN
(N) that is false in

RN . We must show that there is an inference from N that reduces C0 · θ; i.e., the inference
has main premise C0 · θ, side premises in N that are true in RN , and a conclusion that is a
smaller counterexample than C0 · θ. For all claims of a reducing inference in this proof, we
use Lemma 5.75 to show that the conclusion is variable-irreducible.

Let L0 be an eligible literal in C0 · θ. Let C = C0θ. We proceed by a case distinction:

Case 1: L0θ is of the form s ̸≈ s′.

– Case 1.1: s = s′. Then PFEqRes reduces C.
– Case 1.2: s ≠ s′. Without loss of generality, s ≻ s′. Since RN ̸|=fol C, we have RC ̸|=fol C

by Lemma 5.69. Therefore, RC ̸|=fol s ̸≈ s′ and RC |=fol s ≈ s′. Thus, s must be reducible
by RC because s ≻ s′. Therefore, we can apply Lemma 5.76.

Case 2: L0θ is of the form s ≈ s′. Since RN ̸|=fol C, we can assume without loss of
generality that s ≻ s′.

– Case 2.1: L0 is eligible, but not strictly eligible. Then L0θ occurs more than once in C.
So we can apply PFEqFact to reduce the counterexample.

– Case 2.2: L0 is strictly eligible and s is reducible by RC . Then we apply Lemma 5.76.
– Case 2.3: L0 is strictly eligible and s = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then, since s ≻ s′, we have s′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (O4)PF.

So, PFFalseElim reduces the counterexample.
– Case 2.4: L0 is strictly eligible and s is functional. Then we apply PFArgCong to

reduce the counterexample. The conclusion is smaller than the premise by (O5)PF. By
Lemma 5.73, there must be at least one choice of u and w in the PFArgCong rule such
that the conclusion is a counterexample.

– Case 2.5: L0 is strictly eligible and s ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is nonfunctional and not reducible by RC . Since
RN ̸|=fol C, C0 · θ cannot be productive. So at least one of the conditions of (∆4) of
Definition 5.66 is violated. (CC1), (CC2), (CC3), (CC4), (CC7), (CC10), and (CC11) are
clearly satisfied.

For (CC5), (CC6), (CC8), and (CC9), we argue as follows:
– (CC5): If s were headed by a logical symbol, then one of the cases of (∆1) applies.
The condition in (∆1) that any Boolean arguments of s must be ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is fulfilled by
Lemma 5.68 and the fact that the rules applicable to subterms of s in RN are already
contained in Rs. So (∆1) adds a rewrite rule for s to RC , contradicting irreducibility
of s.

– (CC6): If s′ were a Boolean other than ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, since s ≻ s′, we would have s ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by
(O4)PF. Moreover, s′ ⪰ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and thus C ⪰ s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since s is not reducible by RC , is is
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also irreducible by R
s≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ⊆ RC . So (∆2) triggers and sets ∆

s≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ = {s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. Since
s is not reducible by RC , we must have C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. But then C istrue in RN , a
contradiction.

– (CC8): By (CC6), L0 cannot be selected and thus eligibility implies maximality.
– (CC9): By (CC6), L0 cannot be selected. If another literal was selected, L0 would not

be eligible.
So (CC12) must be violated. Then RC ∪ {s → s′} |=fol C

′, where C ′ is the subclause
of C with L0θ removed. However, RC ̸|=fol C, and therefore, RC ̸|=fol C

′. Thus, we
must have C ′ = C ′′ ∨ r ≈ t for some terms r and t, where RC ∪ {s → s′} |=fol r ≈ t
and RC ̸|=fol r ≈ t. So r ̸= t and without loss of generality we assume r ≻ t. Moreover
s → s′ must participate in the normalization of r or t by RC ∪ {s → s′}. Since s ≈ s′ is
maximal in C by (CC8), r ⪯ s. So the rule s → s′ can be used only as the first step in
the normalization of r. Hence r = s and RC |=fol s

′ ≈ t. Then PFEqFact reduces the
counterexample.

Using Lemma 5.77 and the same ideas as for Theorem 4.9 of Bachmair and Ganzinger’s
framework [2], we obtain the following theorem:

Theorem 5.78. Let N be a set of closures that is saturated up to redundancy w.r.t. PFInf
and PFRed I, and N does not contain ⊥ · θ for any θ. Then RN |=oλ irredRN

(N).

Proof. By Lemma 5.74, it suffices to show that RN |=fol irredRN
(N). For a proof by contra-

diction, we assume that RN ̸|=fol irredRN
(N). Then N contains a minimal counterexample,

i.e., a closure C0 · θ that is variable-irreducible w.r.t. RN with RN ̸|=fol C0 · θ. Since PFInf
has the reduction property for counterexamples by Lemma 5.77, there exists an inference that
reduces C0 · θ—i.e., an inference ι with main premise C0 · θ, side premises in N that are true
in RN , and a conclusion concl(ι) that is smaller than C0 · θ, variable-irreducible w.r.t. RN ,
and false in RN . By saturation up to redundancy, ι ∈ PFRed I. By Definition 5.26, we have
RN ∪ {E ∈ irredRN

(N) | E ≺ C0 · θ} |=oλ concl(ι). By minimality of the counterexample
C0 · θ, the closures {E ∈ irredRN

(N) | E ≺ C0 · θ} must be true in RN , and it follows that
concl(ι) is true in RN , a contradiction.

Lemma 5.79. Let R be a confluent term rewrite system oriented by ≻ whose only Boolean
normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let N ⊆ CPF such that for every C · θ ∈ N and every grounding
substitution ρ that coincides with θ on all variables not occurring in C, we have C · ρ ∈ N .
Then R ∪ irredR(N) |=oλ N .

Proof. Let C · θ ∈ N . We must show that R∪ irredR(N) |=oλ C · θ. We define a substitution
θ′ by xθ′ = (xθ)↓R for variables x occurring in C and xθ′ = xθ for all other variables. Then
R ∪ {C · θ′} |=oλ C · θ. Moreover, θ′ is grounding and coincides with θ on all variables not
occurring in C. By the assumption of this lemma, we have C · θ′ ∈ N . Finally, we observe
that the closure C · θ′ is variable-irreducible w.r.t. R—i.e., C · θ′ ∈ irredR(N). It follows
that R ∪ irredR(N) |=oλ C · θ.

5.6.2. Indexed Partly Substituted Ground Higher-Order Level.
In this subsubsection, let ≻ be an admissible term order for IPGInf (Definition 5.21),

let ipgsel be a selection function on CIPG, and let N ⊆ CIPG such that N is saturated up to
redundancy w.r.t. IPGInf and ⊥ · θ ̸∈ N for all θ. We write R for the term rewrite system
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RF (N) constructed in the previous subsubsection w.r.t. ≻F and F (ipgsel). We write t ∼ s
for F (t) ↔∗

R F (s), where t, s ∈ Tground(ΣI).
Our goal in this subsubsection is to use R to define a higher-order interpretation that is

a model of N . To obtain a valid higher-order interpretation, we need to show that sθ ∼ sθ′

whenever xθ ∼ xθ′ for all x in s.

Lemma 5.80 (Argument congruence). Let s ∼ s′ for s, s′ ∈ Tground(ΣI). Let u ∈ Tground(ΣI).
Then s u ∼ s′ u.

Proof. Let t, t′, v be terms and θ a grounding substitution such that tθ = s, t′θ = s′, vθ = u,
and the nonfunctional yellow subterms of t, t′, v are different variables. Let ρ the substitution
resulting from R-normalizing all values of θ (via F ). Then there exists the inference

IPGDiff
t diffτ,υ

tρ,t′ρ ̸≈ t′ diffτ,υ
tρ,t′ρ ∨ t v ≈ t′ v · ρ

which we call ι. By construction of ρ, its conclusion is variable-irreducible.
Since N is saturated, ι is redundant and thus R ∪ F (irredR(N)) |= F (concl(ι)). Hence

R |= F (concl(ι)) by Theorem 5.78 and Lemma 5.36.
We have tρ ∼ tθ = s ∼ s′ = t′θ ∼ t′ρ. By Lemma 5.72, R |= F (tρ diffτ,υ

tρ,t′ρ) ≈
F (t′ρ diffτ,υ

tρ,t′ρ). Using Lemma 5.5, it follows that R |= F ((t v ≈ t′ v)ρ). Since applying

a functional term to an argument preserves nonfunctional yellow subterms of both the
functional term and its argument, we have s u = (t v)θ ∼ (t v)ρ and s′ u = (t′ v)θ ∼ (t′ v)ρ.
So R |= F (s u ≈ s′ u) and thus s u ∼ s′ u.

The following lemma and its proof are essentially identical to Lemma 54 of Bentkamp et
al. [6]. We have adapted the proof to use De Bruijn indices, and we have removed the notion
of term-ground and replaced it by preprocessing term variables, which arguably would have
been more elegant in the original proof as well.

Lemma 5.81. Let s ∈ T (ΣI), and let θ, θ′ be grounding substitutions such that xθ ∼ xθ′

for all variables x and αθ = αθ′ for all type variables α. Then sθ ∼ sθ′.

Proof. In this proof, we work directly on λ-terms. To prove the lemma, it suffices to prove it
for any λ-term s ∈ T λ(ΣI). Here, for t1, t2 ∈ T λ

ground(ΣI), the notation t1 ∼ t2 is to be read
as t1↓β ∼ t2↓β because F is defined only on β-normal λ-terms.

Without loss of generality, we may assume that s contains no type variables. If s does
contain type variables, we can instead use the term s0 resulting from instantiating each
type variable α in s with αθ. If the result holds for the term s0, which does not contain
type variables, then s0θ ∼ s0θ

′, and thus the result also holds for s because sθ = s0θ and
sθ′ = s0θ

′.

Definition We extend the syntax of λ-terms with a new polymorphic function symbol
⊕ : Πα. α → α → α. We will omit its type argument. It is equipped with two reduction
rules: ⊕ t s → t and ⊕ t s → s. A β⊕-reduction step is either a rewrite step following one of
these rules or a β-reduction step.

The computability path order ≻CPO [12] guarantees that

– ⊕ t s ≻CPO s by applying rule @▷;
– ⊕ t s ≻CPO t by applying rule @▷ twice;
– (λ t) s ≻CPO t{0 7→ s} by applying rule @β.
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Since this order is moreover monotone, it decreases with β⊕-reduction steps. The order is
also well founded; thus, β⊕-reductions terminate. And since the β⊕-reduction steps describe
a finitely branching term rewriting system, by Kőnig’s lemma [21], there exists a maximal
number of β⊕-reduction steps from each λ-term.

Definition We introduce an auxiliary function S that essentially measures the size of a
λ-term but assigns a size of 1 to ground λ-terms.

S(s) =


1 if s is ground or if s is a variable

1 + S(t) if s is not ground and has the form λ t

S(t) + S(u) if s is not ground and has the form t u

We prove sθ ∼ sθ′ by well-founded induction on s, θ, and θ′ using the left-to-right
lexicographic order on the triple

(
n1(s), n2(s), n3(s)

)
∈ N4, where

– n1(s) is the maximal number of β⊕-reduction steps starting from sσ, where σ is the
substitution mapping each variable x to ⊕ xθ xθ′;

– n2(s) is the number of variables occurring more than once in s;
– n3(s) = S(s).

Case 1: The λ-term s is ground. Then the lemma is trivial.

Case 2: The λ-term s contains k ≥ 2 variables. Then we can apply the induction hypothesis
twice and use the transitivity of ∼ as follows. Let x be one of the variables in s. Let
ρ = {x 7→ xθ} the substitution that maps x to xθ and ignores all other variables. Let
ρ′ = θ′[x 7→ x].

We want to invoke the induction hypothesis on sρ and sρ′. This is justified because sσ
⊕-reduces to sρσ and to sρ′σ, for σ as given in the definition of n1. These ⊕-reductions have
at least one step because x occurs in s and k ≥ 2. Hence, n1(s) > n1(sρ) and n1(s) > n1(sρ

′).
This application of the induction hypothesis gives us sρθ ∼ sρθ′ and sρ′θ ∼ sρ′θ′. Since

sρθ = sθ and sρ′θ′ = sθ′, this is equivalent to sθ ∼ sρθ′ and sρ′θ ∼ sθ′. Since moreover
sρθ′ = sρ′θ, we have sθ ∼ sθ′ by transitivity of ∼. The following illustration visualizes the
above argument:

sρ sρ′

sθ ∼
IH

sρθ′ = sρ′θ ∼
IH

sθ′
θ θ′ θ θ′

Case 3: The λ-term s contains a variable that occurs more than once. Then we rename
variable occurrences apart by replacing each occurrence of each variable x by a fresh variable
xi, for which we define xiθ = xθ and xiθ

′ = xθ′. Let s′ be the resulting λ-term. Since
sσ = s′σ for σ as given in the definition of n1, we have n1(s) = n1(s

′). All variables
occur only once in s′. Hence, n2(s) > 0 = n2(s

′). Therefore, we can invoke the induction
hypothesis on s′ to obtain s′θ ∼ s′θ′. Since sθ = s′θ and sθ′ = s′θ′, it follows that sθ ∼ sθ′.

Case 4: The λ-term s contains only one variable x, which occurs exactly once.

Case 4.1: The λ-term s is of the form f⟨τ̄⟩ t̄ for some symbol f, some types τ̄ , and some
λ-terms t̄. Then let u be the λ-term in t̄ that contains x. We want to apply the induction
hypothesis to u, which can be justified as follows. For σ as given in the definition of n1,
consider the longest sequence of β⊕-reductions from uσ. This sequence can be replicated
inside sσ = (f⟨τ̄⟩ t̄)σ. Therefore, the longest sequence of β⊕-reductions from sσ is at least
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as long—i.e., n1(s) ≥ n1(u). Since both s and u have only one variable occurrence, we have
n2(s) = 0 = n2(u). But n3(s) > n3(u) because u is a nonground subterm of s.

Applying the induction hypothesis gives us uθ ∼ uθ′. By definition of F , we have
F((f⟨τ̄⟩ t̄)θ) = f τ̄m F(t̄θ) and analogously for θ′, where m is the length of t̄. By congruence of
≈ in first-order logic, it follows that sθ ∼ sθ′.

Case 4.2: The λ-term s is of the form x t̄ for some λ-terms t̄. Then we observe that, by
assumption, xθ ∼ xθ′. Since x occurs only once, t̄ are ground. Then xθ t̄ ∼ xθ′ t̄ by applying
Lemma 5.80 repeatedly. Hence sθ = xθ t̄ and sθ = xθ′ t̄, and it follows that sθ ∼ sθ′.

Case 4.3: The λ-term s is of the form λ u for some λ-term u. Then we observe that to
prove sθ ∼ sθ′, by Lemma 5.73, it suffices to show that sθ diffsθ,sθ′ ∼ sθ′ diffsθ,sθ′ . Via
β-conversion, this is equivalent to vθ ∼ vθ′, where v = u{0 7→ diffsθ,sθ′}. To prove vθ ∼ vθ′,
we apply the induction hypothesis on v.

It remains to show that the induction hypothesis applies on v. For σ as given in the
definition of n1, consider the longest sequence of β⊕-reductions from vσ. Since diffsθ,sθ′ is
not a λ-abstraction, substituting it for 0 will not cause additional β⊕-reductions. Hence,
the same sequence of β⊕-reductions can be applied inside sσ = (λ u)σ, proving that
n1(s) ≥ n1(v). Since both s and v have only one variable occurrence, n2(s) = 0 = n2(v).
But n3(s) = S(s) = 1+S(u) because s is nonground. Moreover, S(u) = S(v) = n3(v). Hence,
n3(s) > n3(v), which justifies the application of the induction hypothesis.

Case 4.4: The λ-term s is of the form (λ u) t0 t̄ for some λ-terms u, t0, and t̄. We apply
the induction hypothesis on s′ = u{0 7→ t0} t̄, justified as follows. For σ as given in the
definition of n1, consider the longest sequence of β⊕-reductions from s′σ. Prepending the
reduction sσ →β s′σ to it gives us a longer sequence from sσ. Hence, n1(s) > n1(s

′). The
induction hypothesis gives us s′θ ∼ s′θ′. Since ∼ is invariant under β-reductions, it follows
that sθ ∼ sθ′.

Using the term rewrite system R, we define a higher-order interpretation IIPG =
(UIPG, JIPGty , JIPG,LIPG). The construction proceeds as in the completeness proof of the
original λ-superposition calculus [6]. Let (U, J) = R; i.e., Uτ is the universe for the first-order
type τ , and J is the interpretation function. Since the higher-order and first-order type
signatures are identical, we can identify ground higher-order and first-order types. We will
define a domain Dτ for each ground type τ and then let UIPG be the set of all these domains
Dτ . We cannot identify the domains Dτ with the first-order domains Uτ because domains
Dτ for functional types τ must contain functions. Instead, we will define suitable domains
Dτ and a bijection Eτ between Uτ and Dτ for each ground type τ .

We define Eτ and Dτ in mutual recursion. To ensure well definedness, we must show that
Eτ is bijective. We start with nonfunctional types τ : Let Dτ = Uτ , and let Eτ : Uτ → Dτ

be the identity. Clearly, the identity is bijective. For functional types, we define

Dτ→υ = {φ : Dτ → Dυ | ∃s : τ → υ. ∀u : τ. φ (Eτ (JF (u)KR)) = Eυ (JF (s u)KR)}

Eτ→υ : Uτ→υ → Dτ→υ

Eτ→υ(JF (s)KR) (Eτ (JF (u)KR)) = Eυ(JF (s u)KR)

To verify that this equation is a valid definition of Eτ→υ, we must show that

– every element of Uτ→υ is of the form JF (s)KR for some s ∈ Tground(ΣI);
– every element of Dτ is of the form Eτ (JF (u)KR) for some u ∈ Tground(ΣI);
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– the definition does not depend on the choice of such s and u; and
– Eτ→υ(JF (s)KR) ∈ Dτ→υ for all s ∈ Tground(ΣI).

The first claim holds because R is term-generated and F is a bijection. The second
claim holds because R is term-generated and F and Eτ are bijections. To prove the third
claim, we assume that there are other terms t ∈ Tground(ΣI) and v ∈ Tground(ΣI) such
that JF (s)KR = JF (t)KR and Eτ (JF (u)KR) = Eτ (JF (v)KR). Since Eτ is bijective, we have
JF (u)KR = JF (v)KR—i.e., u ∼ v. The terms s, t, u, v are in Tground(ΣI), allowing us to apply
Lemma 5.81 to the term x y and the substitutions {x 7→ s, y 7→ u} and {x 7→ t, y 7→ v}.
Thus, we obtain s u ∼ t v—i.e., JF (s u)KR = JF (t v)KR—indicating that the definition of
Eτ→υ above does not depend on the choice of s and u. The fourth claim is obvious from the
definition of Dτ→υ and the third claim.

It remains to show that Eτ→υ is bijective. For injectivity, we fix two terms s, t ∈
Tground(ΣI) such that for all u ∈ Tground(ΣI), we have JF (s u)KR = JF (t u)KR. By Lemma 5.73,
it follows that JF (s)KR = JF (t)KR, which shows that Eτ→υ is injective. For surjectivity,
we fix an element φ ∈ Dτ→υ. By definition of Dτ→υ, there exists a term s such that
φ (Eτ (JF (u)KR)) = Eυ (JF (s u)KR) for all u. Hence, Eτ→υ(JF (s)KR) = φ, proving surjectiv-
ity and therefore bijectivity of Eτ→υ. Below, we will usually write E instead of Eτ since the
type τ is determined by Eτ ’s first argument.

We define the higher-order universe as UIPG = {Dτ | τ ground}. In particular, by
Lemma 5.74, this implies that Do = {0, 1} ∈ UIPG as needed, where 0 is identified with [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]
and 1 with [⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤]. Moreover, we define JIPGty (κ)(Dτ̄ ) = Dκ(τ̄) for all κ ∈ Σty, completing the

type interpretation of IIPGty = (UIPG, JIPGty ) and ensuring that JIPGty (o) = Do = {0, 1}.
We define the interpretation function JIPG for symbols f : Πᾱm. τ by JIPG(f,Dῡm) =

E(JF (f⟨ῡm⟩)KR).
We must show that this definition indeed fulfills the requirements of an interpretation

function. By definition, we have (I1) JIPG(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = E(J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KR) = J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KR = 1 and (I2) JIPG(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) =
E(J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KR) = J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KR = 0.

Let a, b ∈ {0, 1}, u0 = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and u1 = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Then, by Lemma 5.74,

(I3) JIPG(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = E(JF (∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)KR)(JF (ua)KR, JF (ub)KR)
= E(JF (ua ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ub)KR) = min{a, b}

(I4) JIPG(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = E(JF (ua ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ub)KR) = max{a, b}
(I5) JIPG(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = E(JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)KR)(JF (ua)KR)

= E(JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR) = JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR = 1− a

(I6) JIPG(→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = E(JF (ua →→→→→→→→→→→→→→→→→→→→→→→→→ ub)KR) = max{1− a, b}
(I7) Let Dτ ∈ UIPG and a′, b′ ∈ Dτ . Since E is bijective and R is term-generated, there

exist ground terms u and v such that E(JF (u)KR) = a′ and E(JF (v)KR) = b′. Then

JIPG(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈,Dτ )(a
′, b′) = E(JF (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨τ⟩)KR)(E(JF (u)KR),E(JF (v)KR)) = E(JF (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨τ⟩ v)KR)

which is 1 if a′ = b′ and 0 otherwise by Lemma 5.74. (I8) Similarly JIPG( ̸≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≉≈,Dτ )(a
′, b′) = 0 if

a′ = b′ and 1 otherwise. This concludes the proof that JIPG is an interpretation function.
Finally, we need to define the designation function LIPG, which takes a valuation ξ and

a λ-expression as arguments. Given a valuation ξ, we choose a grounding substitution θ
such that Dαθ = ξty(α) and E(JF (xθ)KR) = ξte(x) for all type variables α and all variables
x. Such a substitution can be constructed as follows: We can fulfill the first equation in a
unique way because there is a one-to-one correspondence between ground types and domains.
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Since E−1(ξte(x)) is an element of a first-order universe and R is term-generated, there
exists a ground term s such that JsKξR = E−1(ξte(x)). Choosing one such s and defining
xθ = F −1(s) gives us a grounding substitution θ with the desired property.

Let LIPG(ξ, λt) = E(JF ((λ t)θ)KR). We need to show that our definition does not depend
on the choice of θ. We assume that there exists another substitution θ′ with the properties
Dαθ′ = ξty(α) for all α and E(JF (xθ′)KR) = ξte(x) for all x. Then we have αθ = αθ′ for
all α due to the one-to-one correspondence between domains and ground types. We have
JF (xθ)KR = JF (xθ′)KR for all x because E is injective. By Lemma 5.81 it follows that
JF ((λ t)θ)KR = JF ((λ t)θ′)KR, which proves that LIPG is well defined. This concludes the
definition of the interpretation IIPG = (UIPG, JIPGty , JIPG,LIPG). It remains to show that

IIPG is proper.
The higher-order interpretation IIPG relates to the first-order interpretation R as follows:

Lemma 5.82. Given a ground λ-term t ∈ T λ
ground(ΣI), we have

JtKIIPG = E(JF (t↓β)KR)

Proof. The proof is adapted from the proof of Lemma 40 in Bentkamp et al. [8]. We proceed
by induction on t. If t is of the form f⟨τ̄⟩, then

JtKIIPG = JIPG(f,Dτ̄ )

= E(JF(f⟨τ̄⟩)KR) = E(JF(t↓β)KR)

If t is an application t = t1 t2, where t1 is of type τ → υ, then

Jt1 t2KIIPG = Jt1KIIPG(Jt2KIIPG)

IH
= Eτ→υ(JF(t1↓β)KR)(Eτ (JF(t2↓β)KR))

Def E
= Eυ(JF((t1 t2)↓β)KR)

If t is a λ-expression, then

Jλ uKξ
IIPG = LIPG(ξ, λ u)

= E(JF((λ u)θ↓β)KR)
= E(JF((λ u)↓β)KR)

where θ is a substitution as required by the definition of LIPG.

We need to show that the interpretation IIPG is proper. In the proof, we will need the
following lemma, which is very similar to the substitution lemma (Lemma 4.1), but we must
prove it here for our particular interpretation IIPG because we have not shown that IIPG is
proper yet.

Lemma 5.83. Let ρ be a grounding substitution, t be a λ-term, and ξ be a valuation.
Moreover, we define a valuation ξ′ by ξ′ty(α) = JαρKξty

IIPG
ty

for all type variables α and ξ′te(x) =

JxρKξ
IIPG for all term variables x. We then have

JtρKξ
IIPG = JtKξ

′

IIPG

Proof. The proof is adapted from the proof of Lemma 41 in Bentkamp et al. [8]. We proceed
by induction on the structure of τ and t. The proof is identical to that of Lemma 4.1, except
for the last case, which uses properness of the interpretation, a property we cannot assume
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here. However, here, we have the assumption that ρ is a grounding substitution. Therefore,
if t is a λ-expression, we argue as follows:

J(λ u)ρKξ
IIPG = Jλ uρKξ

IIPG

= LIPG(ξ, λ uρ) by the definition of the term denotation

= E(JF((λ u)ρθ↓β)KR) for some θ by the definition of LIPG

= E(JF((λ u)ρ↓β)KR) because (λ u)ρ is ground
∗
= LIPG(ξ′, λ u) by the definition of LIPG and Lemma 5.82

= Jλ uKξ
′

IIPG by the definition of the term denotation

The step labeled with ∗ is justified as follows: We have LIPG(ξ′, λ u) = E(JF((λ u)θ′↓β)KR)
by the definition of LIPG, if θ′ is a substitution such that Dαθ′ = ξ′ty(α) for all α and
E(JF(xθ′↓β)KR) = ξ′te(x) for all x. By the definition of ξ′ and by Lemma 5.82, ρ is such a
substitution. Hence, LIPG(ξ′, λ u) = E(JF((λ u)ρ↓β)KR).

Lemma 5.84. The interpretation IIPG is proper.

Proof. We need to show that Jλ tK(ξty,ξte)
IIPG (a) = Jt{0 7→ x}K(ξty,ξte[x 7→a])

IIPG , where x is a fresh
variable.

Jλ tK(ξty,ξte)
IIPG (a) = LIPG((ξty, ξte), λ t)(a) by the definition of term denotation

= E(JF ((λ t)θ↓β)KR)(a) by the definition of LIPG for some θ
such that E(JF (zθ)KR) = ξte(z) for
all z and Dαθ = ξty(α) for all α

= E(JF (((λ t)θ s)↓β)KR) by the definition of E
where E(JF (s)KR) = a

= E(JF (t{0 7→ x}(θ[x 7→ s])↓β)KR) by β-reduction
where x is fresh

= Jt{0 7→ x}(θ[x 7→ s])K
IIPG by Lemma 5.82

= Jt{0 7→ x}K(ξty,ξte[x 7→a])

IIPG by Lemma 5.83

Lemma 5.85. IIPG is term-generated; i.e., for all D ∈ UIPG and all a ∈ D, there exists a
ground type τ such that JτK

IIPG
ty

= D and a ground term t such that JtK
IIPG = a.

Proof. In the construction above, it is clear that there is a one-to-one correspondence between
ground types and domains, which yields a suitable ground type τ .

Since R is term-generated, there must be a ground term s ∈ TPF such that JsKR = E−1(a).
Let t = F −1(s). Then, by Lemma 5.82, JtK

IIPG = E(JsKR) = a.

Lemma 5.86. Given C · θ ∈ CIPG, we have IIPG |= C · θ if and only if R |= F (C · θ).

Proof. By Lemma 5.82, we have

JtKIIPG = E(JF (t↓β)KR)

for any t ∈ Tground(ΣI). Since E is a bijection, it follows that a ground literal sθ ≈̇ tθ in a

clause C · θ ∈ CIPG is true in IIPG if and only if F (sθ ≈̇ tθ) is true in R. So any closure
C · θ ∈ CIPG is true in IIPG if and only if F (C · θ) is true in R.
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Theorem 5.87. Let N ⊆ CIPG be saturated up to redundancy w.r.t. IPGRed I, and N does
not contain a closure of the form ⊥· θ for any θ. Then IIPG |= irredR(N), where R = RF (N).

Proof. By Lemma 5.86, it suffices to show that R is a model of irredR(F (N)). We apply
Theorem 5.78. Lemma 5.36 shows the condition of saturation up to redundancy.

Lemma 5.88. Let R be a confluent term rewrite system on TPF oriented by ≻F whose only
Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let N ⊆ CIPG such that for every C · θ ∈ N and every
grounding substitution ρ that coincides with θ on all variables not occurring in C, we have
C · ρ ∈ N . Then R ∪ F (irredR(N)) |=oλ F (N).

Proof. We apply Lemma 5.79. The required condition on F (N) can be derived from this
lemma’s condition on N and the fact that F is a bijection (Lemma 5.4).

5.6.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let ≻ be an
admissible term order for PGInf (Definition 5.22), and let pgsel be a selection function on
CPG (Definition 5.18).

It is inconvenient to construct a model of N0 for the PG level because J converts param-
eters into subscripts. For example, in the model constructed in the previous subsubsection,
it can happen that a ≈ b holds, but fa ≈ fb does not hold, where a and b are constants and
fa and fb are constants originating from a constant f with a parameter. For this reason, our
completeness result for the PG level only constructs a model of irredR(J (N)) ⊆ CIPG instead
of irredR(N) ⊆ CPG. We will overcome this flaw when we lift the result to the H level where
the initial clause set can be assumed not to contain any constants with parameters.

Theorem 5.89. Let N ⊆ CPG be saturated up to redundancy w.r.t. PGRed I, and N does
not contain a closure of the form ⊥ · θ for any θ. Then IIPG |= J (irredR(N)), where
R = RF (J (N)).

Proof. This follows from Theorem 5.87 and Lemma 5.43.

Lemma 5.90. Let R be a confluent term rewrite system on TPF oriented by ≻JF whose
only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let N ⊆ CPG be a clause set without parameters
such that for every C · θ ∈ N and every grounding substitution ρ that coincides with θ on all
variables not occurring in C, we have C · ρ ∈ N . Then R ∪ F (J (irredR(N))) |=oλ F (J (N)).

Proof. We apply Lemma 5.88. The required condition on J (N) can be derived from this
lemma’s condition on N as follows. We must show that for every C · θ ∈ J (N) and every
grounding substitution ρ that coincides with θ on all variables not occurring in C, we have
C ·ρ ∈ J (N). The closure C ·θ ∈ J (N) must be of the form J (C ′ ·θ′) with C ′ ·θ′ ∈ N . Define
ρ′ as xρ′ = J−1(xρ) for all x. By this lemma’s condition on N , it follows that C ′ · ρ′ ∈ N .
and thus C · ρ = J (C ′ · ρ′) ∈ J (N). Here, it is crucial that N does not contain parameters
because only this guarantees that C = Jθ′(C ′) = Jρ′(C ′).
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5.6.4. Full Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
(Definition 3.16), extended to be an admissible term order for PGInf as in Section 5.4.4,
and let hsel be a selection function (Definition 3.18).

Definition 5.91. A derivation is a finite or infinite sequence of sets (Ni)i≥0 such that
Ni \Ni+1 ⊆ HRedC(Ni+1) for all i. A derivation is called fair if all HInf -inferences from
clauses in

⋃
i

⋂
j≥iNj are contained in

⋃
iHRed I(Ni).

Lemma 5.92. The redundancy criteria HRedC and HRed I fulfill the following properties,
as stated by Waldmann et al. [33]:

(R2) if N ⊆ N ′, then HRedC(N) ⊆ HRedC(N
′) and HRed I(N) ⊆ HRed I(N

′);
(R3) if N ′ ⊆ HRedC(N), then HRedC(N) ⊆ HRedC(N \N ′) and HRed I(N) ⊆ HRed I(N \N ′);
(R4) if ι ∈ HInf and concl(ι) ∈ N , then ι ∈ HRedI(N).

Proof. (R2): This is obvious by definition of clause and inference redundancy.
(R3) for clauses:
Define ▶ as a relation on sets of closures C · θ, where C ∈ CH as

C · θ ▶ D · ρ iff Cθ ≻ Dρ or (Cθ = Dρ and C ⊐ D)

Clearly, for all C ∈ CH and all N ⊆ CH, we have C ∈ HRedC(N) if and only if for all
confluent term rewrite systems R on TF oriented by ≻ whose only Boolean normal forms
are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and all C · θ ∈ irredR(G(C)), we have

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N)) and E · ζ ◀ C · θ} |=oλ F (Cθ)

Now we are ready to prove (R3). Let C ∈ HRedC(N). We must show that C ∈
HRedC(N \N ′). Let R be a confluent term rewrite system on TPF oriented by ≻ whose only
Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let C · θ ∈ irredR(FJPG(C)). We must show that

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and E · ζ ◀ C · θ} |=oλ F (Cθ)

Since C ∈ HRedC(N), we know that

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N)) and E · ζ ◀ C · θ} |=oλ F (Cθ)

So it suffices to show that

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and E · ζ ◀ C · θ}
|=oλ R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N)) and E · ζ ◀ C · θ}

Let E0 · ζ0 ∈ irredR(G(N)) with E0 · ζ0 ◀ C · θ. We will show by well-founded induction on
E0 · ζ0 w.r.t. ◀ that

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and E · ζ ◀ C · θ} |=oλ F (E0ζ0) (∗)
Our induction hypothesis states:

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and E · ζ ◀ C · θ}
|=oλ {F (Eζ) | E · ζ ∈ irredR(G(N)) and E · ζ ◀ E0 · ζ0}

If E0 · ζ0 ∈ irredR(G(N \N ′)), the claim (∗) is obvious. So we may assume that E0 · ζ0 ∈
irredR(G(N ′)). The assumption of (R3) states N ′ ⊆ HRedC(N), and thus we have

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N)) and E · ζ ◀ E0 · ζ0} |=oλ F (E0ζ0)

By the induction hypothesis, this implies (∗).
(R3) for inferences:
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Inspecting this definition of HRed I (Definition 5.47), we observe that to show that
HRed I(N) ⊆ HRed I(N \N ′), it suffices to prove that

R ∪ {E ∈ irredR(FJPG(N \N ′)) | E ≺JF F (Cmθm)}
|=oλ

R ∪ {E ∈ irredR(FJPG(N)) | E ≺JF F (Cmθm)}

(possibly without the condition E ≺JF F (Cmθm) for Diff inferences), where Cm, θm, and
R are given in the definition of HRed I. We can equivalently write this as

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and Eζ ≺ Cmθm}
|=oλ {F (Eζ) | E · ζ ∈ irredR(G(N)) and Eζ ≺ Cmθm}

Let E0 · ζ0 ∈ irredR(G(N)) with E0ζ0 ≺ Cmθm. We must show that

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and Eζ ≺ Cmθm} |=oλ F (E0ζ0) (†)
If E0 · ζ0 ∈ irredR(G(N \ N ′)), the claim (†) is obvious. So we may assume that

E0 · ζ0 ∈ irredR(G(N ′)). The assumption of (R3) states N ′ ⊆ HRedC(N), and thus
N ′ ⊆ HRedC(N \N ′) by (R3) for clauses. So we have

R ∪ {F (Eζ) | E · ζ ∈ irredR(G(N \N ′)) and E · ζ ◀ E0 · ζ0} |=oλ F (E0ζ0)

This implies (†) because for any E · ζ with E · ζ ◀ E0 · ζ0, we have Eζ ⪯ E0ζ0 ≺ Cmθm.
(R4) Let ι ∈ HInf with concl(ι) ∈ N . We must show that ι ∈ HRed I(N). Let C1[[S1]],

. . . , Cm[[Sm]] be ι’s premises and Cm+1[[Sm+1]] its conclusion. Let θ1, . . . , θm+1 be a tuple
of substitutions for which ι is rooted in FInf (Definition 3.31). Let R be a confluent term
rewrite systems R oriented by ≻JF whose only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ such that
Cm+1 · θm+1 is variable-irreducible. According to the definition of HRed I (Definition 5.47),
we must show that

R ∪O |=oλ F (Cm+1θm+1)

where O = irredR(FJPG(N)) if ι is a Diff inference and O = {E ∈ irredR(FJPG(N)) |
E ≺JF F (Cmθm)} if ι is some other inference.

Since concl(ι) ∈ N and concl(ι) = Cm+1[[Sm+1]], we have Cm+1[[Sm+1]] ∈ N . Thus,
by Lemma 5.17, F (Cm+1θm+1) ∈ FJPG(N). Since Cm+1 · θm+1 is variable-irreducible, we
have F (Cm+1θm+1) ∈ irredR(FJPG(N)). This completes the proof for Diff inferences
because F (Cm+1θm+1) |=oλ F (Cm+1θm+1). For the other inferences, it remains to prove
that F (Cm+1θm+1) ≺JF F (Cmθm).

By Definition 3.31, F (Cmθm) is the main premise and F (Cm+1θm+1) is the conclusion
of an FInf inference. We will show for each FInf rule that the conclusion is smaller than
the main premise.

For FSup, we must argue that C[t] ≻JF D′ ∨ C[t′]. Since the literal t ≈ t′ is strictly
eligible in D and if t′ is Boolean, then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, the literal t ≈ t′ is strictly maximal in D.
Since the position of t is eligible in C[t], it must either occur in a negative literal, in a literal
of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or in a maximal literal in C[t]. If the position of t is in a negative literal
or in a literal of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then that literal is larger than t ≈ t′ because if t′ is Boolean,
then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Thus, the literal in which t occurs in C[t] is larger than D′ because t ≈ t′ is
strictly maximal in D. If the position of t is in a maximal literal of C[t], then that literal is
larger than or equal to t ≈ t′ because D ≺JF C[t], and thus it is larger than D′ as well. In
C[t′], this literal is replaced by a smaller literal because t ≻JF t′. So C[t] ≻JF D′ ∨ C[t′].



84 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

For FEqRes, clearly, C ′ ∨ u ̸≈ u ≻JF C ′.
For FEqFact, we have u ≈ v ⪰JF u ≈ v′ and thus v ⪰JF v′. Since u ≻JF v, we have

u ≈ v ≻JF v ̸≈ v′ and thus the premise is larger than the conclusion.
For FClausify, it is easy to see that for any of the listed values of s, t, and D, we have

s ≈ t ≻JF D, using (O3)PF and (O4)PF. Thus the premise is larger than the conclusion.
For FBoolHoist and FLoobHoist, we have u ≻JF ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and u ≻JF ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (O4)PF because

u ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and u ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Moreover, the occurrence of u in C[u] is required not to be in a literal of
the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, and thus, by (O4)PF, it must be in a literal larger than these. It
follows that the premise is larger than the conclusion.

For FFalseElim, clearly, C ′ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≻JF C ′.
For FArgCong, the premise is larger than the conclusion by (O5)PF.
For FExt, we use the condition that u ≻JF w and (O3)PF to show that C[F (w)] is

smaller than the premise. We use u ≻JF w and (O5)PF to show that F (u diff⟨τ, υ⟩(u,w)) ̸≈
F (w diff⟨τ, υ⟩(u,w)) is smaller than the premise.

Lemma 5.93. Let R be a confluent term rewrite system on TPF oriented by ≻JF whose
only Boolean normal forms are ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Let N ⊆ CG be a clause set without parameters
such that for every C · θ ∈ N and every grounding substitution ρ, we have C · ρ ∈ N . Then
R ∪ F (J (P (irredR(N)))) |=oλ F (J (P (N))).

Proof. We apply Lemma 5.90. The required condition on J (N) can be derived from this
lemma’s condition on N as follows. We must show that for every C · θ ∈ P (N) and every
grounding substitution ρ that coincides with θ on all variables not occurring in C, we
have C · ρ ∈ P (N). The closure C · θ ∈ P (N) must be of the form C ′p(θ′) · q(θ′) with
C ′ · θ′ ∈ N . Define ρ′ = p(θ′)ρ. By this lemma’s condition on N , it follows that C ′ · ρ′ ∈ N .
By Lemma 5.13, p(ρ′) = p(θ′). We have yρ = yθ = yq(θ′) for all variables y not occurring in
C and in particular for all y not introduced by p(θ′). Thus, by Lemma 5.14, q(ρ′) = ρ. So,
C · ρ = P (C ′ · ρ′) ∈ P (N).

Theorem 5.94. Given a fair derivation (Ni)i≥0, where

1. N0 does not have a term-generated model,
2. N0 does not contain parameters, and
3. N0 does not contain constraints,

we have ⊥[[S]] ∈ Ni for some satisfiable constraints S and some index i.

Proof. By Lemma 9 of Waldmann et al. [33], using Lemma 5.92, the limit N∞ =
⋃

i

⋂
j≥iNj

is saturated up to redundancy w.r.t. HInf and HRed I. By Lemma 5.53, PG(N∞) is saturated
up to redundancy w.r.t. PGInf and PGRed I.

For a proof by contradiction, assume that for all S and all i, ⊥[[S]] ̸∈ Ni. Then N∞ does
not contain such a clause ⊥[[S]] either, and thus PG(N∞) does not contain a clause of the
form ⊥ · θ for any θ. By Lemma 5.89, IIPG |= irredR(J (PG(N∞))), where R = RFJPG(N∞).

By Lemma 8 of Waldmann et al. [33], using Lemma 5.92, N0 ⊆ N∞ ∪ HRedC(N∞).
Thus, R ∪ irredR(FJPG(N∞)) |=oλ irredR(FJPG(N0)). By Lemma 5.93 and conditions
2 and 3 from the present theorem, R ∪ irredR(FJPG(N0)) |=oλ FJPG(N0) and thus R ∪
irredR(FJPG(N∞)) |=oλ FJPG(N0). Since IIPG |= irredR(J (PG(N∞))), by Lemma 5.86, it
follows that IIPG |= J (P (G(N0))).

If we applied each closure’s substitution to its clause in the sets J (P (G(N0))) and
J (Gnd(N0)), the two sets would be identical. So, since IIPG |= J (P (G(N0))), we have
IIPG |= J (Gnd(N0)).
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Now IIPG can be shown to be a model of N0 as follows. Let C ∈ N0. Let ξ be a
valuation. Since IIPG is term-generated by Lemma 5.85, there exists a substitution θ such
that JαθK

IIPG
ty

= ξty(α) for all type variables α in C and JxθK
IIPG = ξte(x) for all term

variables x in C. Since C does not contain parameters by condition 2 of this theorem,
Cθ ∈ J (Gnd(N0)). Thus we have IIPG |= Cθ. By Lemma 4.2, it follows that C is true
w.r.t. ξ and IIPG. Since ξ and C ∈ N0 were arbitrary, we have IIPG |= N0. This contradicts
condition 1 of the present theorem.

Lemma 5.95. Let N be a clause set that does not contain diff. If N has a term-generated
model, then N has a diff-aware model.

Proof. Let I = (Ity, J,L) be a model of N . We assume that the signature of I does not
contain diff. We extend it into a diff-aware model I′ = (I′ty, J

′,L′) as follows.
We define J′(diff,D1,D2, a, b) to be an element e ∈ D1 such that a(e) ̸= b(e) if such an

element exists and an arbitrary element of D1 otherwise. This ensures that I′ is diff-aware
(Definition 2.1).

To define L′, let ξ be a valuation and t be a λ-abstraction. We replace each occurrence
of diff⟨τ, υ⟩(u,w) in t with a ground term s that does not contain diff such that JsKI =
J′(diff, JτKξtyIty

, JυKξtyIty
, JuKξI , JwKξI). Such a term s exists because I is term-generated. We start

replacing the innermost occurrences of diff and proceed outward to ensure that the parameters
of a replaced diff do not contain diff themselves. Let t′ be the result of this replacement.
Then we define L′(ξ, t) = L(ξ, t′). This ensures that I′ is a proper interpretation.

Since N does not contain diff and I is a model of N , it follows that I′ is a model of N
as well.

Corollary 5.96. Given a fair derivation (Ni)i≥0, where

1. N0 |≈ ⊥,
2. N0 does not contain parameters, and
3. N0 does not contain constraints,

we have ⊥[[S]] ∈ Ni for some satisfiable constraints S and some index i.

Proof. By Theorem 5.94 and Lemma 5.95.

6. Conclusion

We presented the optimistic λ-superposition calculus. It is inspired by the original λ-super-
position calculus of Bentkamp et al. [6], which in turn generalizes the standard superposition
calculus by Bachmair and Ganzinger [1]. Our calculus has many advantages over the
original λ-superposition calculus, including more efficient handling of unification, functional
extensionality, and redundancy. Admittedly, its main disadvantage is its lengthy refutational
completeness proof.

We have some ideas on how to extend the calculus further:

– We believe that the inference rules that still require full unification could be adapted
to work with partial unification by adding annotations to constrained clauses. The
annotations would indicate which variables and which constraints stem from rules with
the Fluid- prefix. A modification of the map p used in our proof could ensure that
these variables do not carry the guarantee of being variable-irreducible that currently
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all variables carry. As a result, the proof of Lemma 5.53 would no longer require full
unification, but additional FluidSup inferences would be required into the variables
marked by the annotations.

– We conjecture that the Diff axiom is not necessary for refutational completeness although
our proof currently requires it. Our proof uses it in Lemma 5.80 to show that the
constructed model is a valid higher-order model in the sense that equality of functions
implies equality of their values on all arguments. We suspect that one can construct
a model with this property using saturation w.r.t. ArgCong alone, but the model
construction must be different from the one used in the present proof.

– One of the most explosive rules of the calculus is FluidSup. Bhayat and Suda [11]
propose a modification of inference rules that delays flex-rigid pairs and flex-flex pairs by
adding them as negative literals to the conclusion. They suggest that this modification
in conjunction with additional inference rules for the unification of flex-rigid pairs could
remove the need for FluidSup. We conjecture that one could prove refutational complete-
ness of such a calculus by restructuring Lemma 5.77 to apply the modified inference rules
instead of Lemma 5.76 whenever the only terms reducible by RC correspond to positions
below applied variables on level H.

– Similarly, we conjecture that one could remove the Ext rule by following the idea of
Bhayat [10] to delay unification of functional terms by adding them as negative literals
to the conclusion. If we immediately apply NegExt to these additional literals, one
can possibly prove refutational completeness by restructuring Lemma 5.77 to apply the
modified inference rules instead of Lemma 5.76 whenever the only terms reducible by RC

are functional terms.
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