OPTIMISTIC LAMBDA-SUPERPOSITION

ALEXANDER BENTKAMP ®®, JASMIN BLANCHETTE ©“, MATTHIAS HETZENBERGER ©°,
AND UWE WALDMANN @ ©

¢ Ludwig-Maximilians-Universitat Miinchen, Geschwister-Scholl-Platz 1, 80539 Miinchen, Germany
e-mail address: a.bentkamp@ifi.lmu.de,jasmin.blanchette@ifi.lmu.de

® TU Wien Informatics, Favoritenstraie 9-11, 1040 Vienna, Austria
e-mail address: matthias.hetzenberger@tuwien.ac.at

¢ Max Planck Institute for Informatics, Campus E1 4, 66123 Saarbriicken, Germany
e-mail address: uwe@mpi-inf.mpg.de

ABSTRACT. The A-superposition calculus is a successful approach to proving higher-order
formulas. However, some parts of the calculus are extremely explosive, notably due to the
higher-order unifier enumeration and the functional extensionality axiom. In the present
work, we introduce an “optimistic” version of A-superposition that addresses these two
issues. Specifically, our new calculus delays explosive unification problems using constraints
stored along with the clauses, and it applies functional extensionality in a more targeted
way. The calculus is sound and refutationally complete with respect to a Henkin semantics.
We have yet to implement it in a prover, but examples suggest that it will outperform, or
at least usefully complement, the original A-superposition calculus.

1. INTRODUCTION

The (Boolean) A-superposition calculus [6], which generalizes Bachmair and Ganzinger’s
superposition calculus [1], has shown itself to be a powerful automated reasoning method
for classical higher-order logic with function and Boolean extensionality. The calculus is
sound and refutationally complete with respect to a Henkin semantics. It is implemented
in the Zipperposition prover [30], and a refutationally incomplete, pragmatic version of it
drives the E prover’s higher-order mode [32].

These implementations of A-superposition achieve remarkable empirical results, but to
do so, they must deprioritize or—in incomplete variants—disable specific features of the
calculus that would otherwise cause combinatorial explosion. Among these features, the
most problematic are the following:

— the hugely expensive computation of unifiers of flex—flex pairs, which the calculus requires
instead of allowing Huet’s preunification procedure;

— the functional extensionality axiom and its orientation according to the term order, which
enforces a lot of wasteful extensionality reasoning unrelated to the actual proof goal; and

— the so-called fluid superposition rule, which simulates rewriting below applied variables
and which causes lots of inferences that rarely lead to a successful proof.

Preprint submitted to © A. Bentkamp, J. Blanchette, M. Hetzenberger, and U. Waldmann
Logical Methods in Computer Science © Creative Commons

https://orcid.org/0000-0002-7158-3595
https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0002-2052-8772
https://orcid.org/0000-0002-0676-7195
http://creativecommons.org/about/licenses

2 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

In this article, we introduce the optimistic A-superposition calculus (Section 3), which
addresses the first two issues:

— For unification, our new calculus delays explosive unification problems using constraints
stored along with the clauses.

— For functional extensionality, it introduces a targeted inference rule that works in tandem
with tailored term orders, described in a companion article [4]. The new rule works by
first assuming that two functions are equal and delays the proof that they are equal on all
arguments until the assumption is found to be useful.

Both of these new features delay some work and can be considered “optimistic,” hence the
calculus’s name.

As a pleasant side effect of the new functional extensionality rule, we can strengthen
the redundancy criterion used to simplify clauses. Some inference rules of the original
A-superposition calculus are now simplification rules in our new calculus.

Example 1.1. As an illustration of the stronger redundancy criterion, consider a derivation
starting from the following clauses:

(1) (Ar.x+1) % (A\z. 1 +x)
2ytzmzty
A negative extensionality inference from (1) yields the clause
(3) diff Az. z + 1, Me. 1+ 2) + 1% 1 +diff(A\z. 2 + 1, Ax. 1 +)

which eventually leads to a derivation of the empty clause using (2). The original \-
superposition calculus required us to keep clause (1) and perform further inferences with it,
whereas our new calculus can immediately discard (1) when generating (3).

We prove our calculus sound (Section 4) and refutationally complete (Section 5). The
completeness proof is structured as six levels, starting from superposition for a ground first-
order logic and culminating with nonground higher-order logic with functional extensionality.
The parts of the proof concerned with the constraints attached to clauses and with the
new functional extensionality rule are inspired by basic superposition [3,23]. The two new
features make the proof rather complicated, but the calculus is simpler than the original
A-superposition calculus in many respects:

— The intricate notions of “deep occurrences” and “fluid terms” play no role in our calculus.

— We removed the support for inner clausification, which does not perform well in practice
and complicates the original A-superposition calculus. As an additional benefit, this enables
us to select literals of the form ¢ ~ L (a claim made for the original A-superposition
calculus as well [6] but corrected later [5,25]).

— Our calculus does not require the presence of Hilbert’s choice axiom.

In principle, these simplifications could be applied to the original A-superposition calculus
as well without adding unification constraints or the new functional extensionality rule.
Our calculus’s two main features are inspired by Vampire’s higher-order mode [11],
which is currently the best performing higher-order prover in CASC [28,29]. Like our
calculus, Vampire delays unification problems and functional extensionality proofs. The
mechanisms are slightly different, however, because Vampire stores delayed unification
problems in negative literals instead of constraints, allowing inference rules to be applied to
them, and it uses unification with abstraction for functional extensionality (which is also
implemented in E [32, p. 13]) instead of an inference rule. The similarities to performant

OPTIMISTIC LAMBDA-SUPERPOSITION 3

provers, along with example problems we have studied, suggest that our calculus not only is
refutationally complete but will also perform well empirically. For further related work, we
refer to Bentkamp et al. [6].

2. LoGgic

Our formalism is higher-order logic with functional and Boolean extensionality, rank-1
polymorphism, but without choice and the axiom of infinity. The logic closely resembles
Gordon and Melham’s HOL [18], the TPTP TH1 standard [20], and the logic underlying
A-superposition by Bentkamp et al. [6].

Departing from Bentkamp et al., in the present work, quantifiers are not supported and
must always be encoded as (Az.t) & (Az. T) and (Az.t) ¢ (Az.L). This is necessary because
quantifiers would prevent us from constructing a suitable term order for the extensionality
behavior that we want to achieve. Moreover, we do not include the axiom of choice.

To make the positive literal of the extensionality axiom maximal, we introduce a special
type of argument to constants into our syntax, the parameters. A constant that takes
parameters cannot occur without them; partial application is not allowed for parameters.
Moreover, parameters cannot contain variables bound by A-abstractions.

As our semantics, we use Henkin semantics. True statements in these semantics
correspond exactly to provable statements in the HOL systems. Since Henkin semantics
is not subject to Godel’s first incompleteness theorem, it allows us to prove refutational
completeness.

2.1. Syntax. We use the notation a, or a to denote a tuple (ai,...,a,). If f is a unary
function, we write f(a,) for the elementwise application (f(a1),..., f(ay)).

2.1.1. Types. To define our logic’s types, we fix an infinite set Vy, of type variables. A
set Xty of type constructors, each associated with an arity, is a type signature if it contains
at least one nullary type constructor o of Booleans and a binary type constructor — of
functions. A type is either a type variable o € Vi, or an applied type constructor x(7,) for
some n-ary K € Xty and types 7,. To indicate that an expression e has type 7, we write e : 7.

2.1.2. Lambda-Preterms and Lambda-Terms. To define our logic’s terms, for a given type
signature ¥y, we fix a set V of variables with associated types. We write z(7) for a variable
named z with associated type 7. We require that V contains infinitely many variables of
any type.

A term signature X is a set of constants. Each constant is associated with a type
declaration of the form Ila,,. 7, = v, where 7,, and v are types and &, is a tuple of
distinct variables that contains all type variables from 7, and v. The types 7, are the
types of the parameters of the constant, and v may be a function type if the constant takes
nonparameter arguments. We require that 3 contains the logical symbols T, L :0; = : 0 — o;
AV,=:0— 0 — 0; and =,% : [la. « — a — 0. A type signature and a term signature
form a signature.

Our syntax makes use of a locally nameless notation [13] using De Bruijn indices [14].
We distinguish between A-preterms, A-terms, preterms, and terms. Roughly, A\-preterms are
raw syntactic expressions, A-terms are the subset of locally closed A-preterms, preterms are

4 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Bn-equivalence classes of A-preterms, and terms are Sn-equivalence classes of A-terms. More
precisely, we define these notions as follows.
The set of A\-preterms is built from the following expressions:

a variable x(7) : 7 for (1) € V;

— a symbol f(0,,)(ay) : 7 for a constant f € ¥ with type declaration Ha,,. 7, = T, types Om,
and A-preterms u : 7, such that all De Bruijn indices in % are bound;

— a De Bruijn index n(7) : 7 for a natural number n > 0 and a type 7, where 7 represents
the type of the bound variable;

— a A-expression (1)t : 7 — v for a type 7 and a A-preterm ¢ : v such that all De Bruijn
indices bound by the new A(7) have type 7;

— an application st : v for A\-preterms s : 7 — v and ¢ : 7.

The type arguments (7) carry enough information to enable typing of any A-preterm without
any context. We often leave them implicit, when they are irrelevant or can be inferred. In
f(Om)(uy) : 7, we call u, the parameters. We omit () when a symbol has no parameters.
Notice that it is possible for a term to contain multiple occurrences of the same free De
Bruijn index with different types. In contrast, the types of bound De Bruijn indices always
match.

The set of A-terms is the subset A-preterms without free De Bruijn indices, i.e, the subset
of locally closed A-preterms. We write 7*(X,V) for the set of all A-terms and T*P™(X2, V)
for the set of all A-preterms, sometimes omitting the set V when it is clear from the context.

A A-preterm is called functional if its type is of the form 7 — v for some types 7 and v.
It is called nonfunctional otherwise.

Given a A-preterm t and A-terms sg, ..., Sy, we write t{0 — sq,...,n — s,} for the
A-preterm resulting from substituting s; for each De Bruijn index i + j enclosed into exactly
Jj A-abstractions in ¢. For example, (f01 (Ag12)){0+—a,1—b}=fab(Agab). Given
a A-preterm ¢ and a tuple s, of A-terms, we abbreviate t{0 — s1,...,(n — 1) — s,} as
t{(0,...,n—1) — 5,}.

We write ¢4 for the S-normal form of a A-preterm ¢.

A A-preterm s is a subterm of a A-preterm t, written ¢t = t[s|, if t = s, if t = (7,) (1) v
with u; = w;[s] or v =v[s], if t = Au[s], if t = (u[s]) v, or if t = u (v[s]). A subterm is proper
if it is distinct from the A-preterm itself.

A A-preterm is ground if it contains no type variables and no term variables, i.e., if
it is closed and monomorphic. We write ngigid(z) for the set of ground A-preterms and
T (2) for the set of ground A-terms.

ground

2.1.3. Preterms and Terms. The set of (pre)terms consists of the Sn-equivalence classes of
A-(pre)terms. For a given set of variables V and signature ¥, we write 7 (X, V) for the set of
all terms and 7P (X, V) for the set of all preterms, sometimes omitting the set 'V when it is
clear from the context. We write Zgrounda(2) for the set of ground terms.

When referring to properties of a preterm that depend on the representative of its
equivalence class modulo 3 (e.g., when checking whether a preterm is ground or whether
a preterm contains a given variable z), we use a S-normal representative as the default
representative of the fn-equivalence class. When referring to properties of a preterm that
depend on the choice of representative modulo 7, we state the intended representative
explicitly.

OPTIMISTIC LAMBDA-SUPERPOSITION 5

Clearly, any preterm in S-normal form has one of the following four mutually exclusive
forms:

— z(7) t for a variable x(r) and terms t;

— f(7)(u) t for a symbol f, types 7, and terms @, ¢;
— n(7) ¢ for a De Bruijn index n(r) and terms ¢;

— X(7) t for a term ¢.

2.1.4. Substitutions. A substitution is a mapping p from type variables o € Vi to types ap
and from term variables z(7) € V to (A-)terms xp : 7p. A substitution p applied to a (\-)term
t yields a (A-)term tp in which each variable z is replaced by xp. Similarly, subsitutions can
be applied to types. The notation {& +— 7, > t} denotes a substitution that maps each «;
to 7; and each x; to t;, and all other type and term variables to themselves. The composition
po of two substitutions applies first p and then o: tpo = (tp)o. A grounding substitution
maps all variables to ground types and ground (\-)terms. The notation o[Z +— t] denotes
the substitution that maps each x; to ¢; and otherwise coincides with o.

2.1.5. Clauses. Finally, we define the higher-order clauses on which our calculus operates.
A literal is an unordered pair of two terms s and ¢ associated with a positive or negative sign.
We write positive literals as s ~ t and negative literals as s # t. The notation s &~ ¢ stands
for either s ~ t or s # t. Nonequational literals are not supported and must be encoded as
s~ Tors~Ll. Aclause L1V ---V L, is a finite multiset of literals. The empty clause is
written as L.

2.1.6. Constraints. A constraint is a term pair, written as s = t. A set of constraints
$1=t1, ..., Sy =ty is true if s; and t; are syntactically equal for all i. A set of constraints
S is satisfiable if there exists a substitution such that SO is true. A constrained clause C[S]
is a pair of a clause C and a finite set of constraints S. We write (31 for the set of all
constrained clauses. Similarly, a constrained term t[S] is a pair of a term ¢ and a finite set
of constraints S. Terms and clauses are special cases of constrained terms and constrained
clauses where the set of constraints is empty. Given C[S] € (i and a grounding substitution
6 such that S is true, we call CO a ground instance of C[S]. We write Gnd(C[S]) for the
set of all ground instances of a constrained clause C[S].

2.2. Semantics. The semantics is essentially the same as in Bentkamp et al. [6], adapted
to the modified syntax.

A type interpretation Jy = (U, Jyy) is defined as follows. The universe U is a collection
of nonempty sets, called domains. We require that {0,1} € U. The function Jy, associates
a function Jy (k) : U™ — U with each n-ary type constructor «, such that Jy (o) = {0,1}
and for all domains Dy, Dy € U, the set Jyy(—)(D1, D) is a subset of the function space
from D; to Day. The semantics is standard if Jyy(—)(D1, D2) is the entire function space for
all D1,Day. A type valuation &y is a function that maps every type variable to a domain.
The denotatwn of a type for a type mterpretatlon Jty and a type valuation &y is recursively
defined by [o]§Y = & () and [(PISY = g () (FI5).

Given a type 1nterpretat10n Tty and a type Valuatlon &tys a term valuation & assigns an
element () € [[T]]jtz to each variable x : 7. A valuation { = (&, &te) is a pair of a type
valuation &, and a term valuation &e.

6 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

An interpretation function J for a type interpretation Jty associates with each symbol
f:Na,,. 7= v, a domain tuple D,, € U™, and values a € [[T]]j a value J(f, D,, @) € [[U]]&y
where &, is a type valuation that maps each a; to D;. We requn“e that

(I1) 4(T) =1 (I5) d(~)(a) =1 —a

(12) 3(L) = 0 (I6) d(—)(a,b) = max {1 — a, b}

(I13) d(A)(a,b) = min{a, b} (I7) (=,)(c, d) =1if ¢ =d and 0 otherwise
(I14) d(V)(a,b) = max {a,b} (I8) (56 D)(e,d) =0 if ¢ = d and 1 otherwise

for all a,b € {0,1}, D € U, and ¢,d € D.

The comprehension principle states that every function designated by a A-expression is
contained in the corresponding domain. Loosely following Fitting [17, Sect. 2.4], we initially
allow A\-expressions to designate arbitrary elements of the domain, to be able to define the
denotation of a A-term. We impose restrictions afterward using the notion of a proper
interpretation, enforcing comprehension.

A A-designation function £ for a type interpretation Ji, is a function that maps a
valuation £ and a A-expression of type 7 to elements of [[T]]g We require that the value

L(&,t) depends only on values of ¢ at type and term variables that actually occur in t.
A type interpretation, an interpretation function, and a A-designation function form an
interpretation J = (Jyy,d, L).

For an mterpretatlon J and a Valuatlon ¢ 2 the denotatlon of a A- term is defined as
1§ = &eele). [FANE)TS = 8(F, FIS . 519D, [115 = TsIS(IA9), and [M(r) 415 = £(€, Ar) 0).
For ground A-terms ¢, the denotation does not depend on the choice of the valuation &,
which is why we sometimes write [t]; for [[t]]

An interpretation J is proper if [A(r)t]] (Coy:bee) (a) = [t{0— :U}]]S&Y’&e[xﬁa]) for all \-
expressions A(7) t and all valuations £, where z is a fresh variable. Given an interpretation
J and a valuation &, a positive literal s &~ ¢ (resp. negative literal s % t) is true if [[s]]§ and
[[t]]g are equal (resp. different). A clause is true if at least one of its literals is true. A
constrained clause C[s1 =t1,...,8, =tp] is true if C V s; & t1 V -+ V s, %ty is true. A
set of constrained clauses is true if all its elements are true. A proper interpretation J is a
model of a set N of constrained clauses, written J = N, if N is true in J for all valuations &.
Given two sets M, N of constrained clauses, we say that M entails N, written M = N, if
every model of M is also a model of N.

J
J(—=
J
J

2.3. The Extensionality Skolem Constant. Any given signature can be extended with
a distinguished constant diff : e, 5. (« — B, —) = «a, which we require for our calculus.
Interpretations as defined above can interpret the constant diff arbitrarily. The intended
interpretation of diff is as follows:

Definition 2.1. We call a proper interpretation J diff-aware if J is a model of the exten-
sionality axiom—i.e.,

T 2 (diff{a, B)(z,9)) # y (diff{a, B)(z,9)) V z = y

Given two sets M, N of constrained clauses, we write M g N if every diff-aware interpretation
that is a model of M is also a model of N.

Our calculus is sound and refutationally complete w.r.t. k& but unsound w.r.t. |=.

OPTIMISTIC LAMBDA-SUPERPOSITION 7

3. CALCULUS

The optimistic A-superposition calculus is designed to process an unsatisfiable set of higher-
order clauses that have no constraints and do not contain constants with parameters, to
enrich this clause set with clauses that may have constraints and may contain the constant
diff, and to eventually derive an empty clause with satisfiable constraints.

Central notions used to define the calculus are green subterms (Section 3.1), which
many of the calculus rules are restricted to, and complete sets of unifiers up to constraints
(Section 3.2), which replace the first-order notion of a most general unifier. Existing unifica-
tion algorithms must be adapted to cope with terms containing parameters (Section 3.3).
The calculus is parameterized by a term order and a selection function, which must fulfill
certain requirements (Section 3.4). The concrete term orders defined in a companion article
fulfill the requirements (Section 3.5). Our core inference rules describe how the calculus
derives new clauses (Section 3.6), and a redundancy criterion defines abstractly under which
circumstances clauses may be deleted and when inferences may be omitted (Section 3.7).
The abstract redundancy criterion supports a wide collection of concrete simplification rules
(Section 3.8). Examples illustrate the calculus’s strengths and limitations (Section 3.9).

3.1. Orange, Yellow, and Green Subterms. As in the original A-superposition calculus,
a central notion of our calculus is the notion of green subterms. These are the subterms that
we consider for superposition inferences. For example, in the clause f a % b, a superposition
inference at a or f a is possible, but not at f. Our definition here deviates from Bentkamp et
al. [6] in that functional terms never have nontrivial green subterms.

In addition to green subterms, we define yellow subterms, which extend green subterms
with subterms inside A-expressions, and orange subterms, which extend yellow subterms
with subterms containing free De Bruijn indices. Orange subterms are the subterms that
our redundancy criterion allows simplification rules to rewrite at. For example, the clauses
Ac#band fzz ~ c can make Af00 % b redundant (assuming a suitable clause order), but
ga# b and g = f cannot make f a % b redundant. It is convenient to define orange subterms
first, then derive yellow and green subterms based on orange subterms.

Orange subterms depend on the choice of S7-normal form:

Definition 3.1 (f#7-Normalizer). Given a preterm ¢, let ¢ |gyiong be its S-normal n-long
form and let t |gpshort be its B-normal n-short form. A Sn-normalizer is a function lay €

{\Lﬁnlong s iﬁnshort } .

Definition 3.2 (Orange Subterms). We start by defining orange positions and orange
subterms on A-preterms.

Given a list of natural numbers p and s,t € TP™(X), we say that p is an orange position
of t, and s is an orange subterm of t at p, written t|, = s, if this can be derived inductively
from the following rules:

1. u|. = u for all u € T*P(X), where ¢ is the empty list.

2. If w;|, = v, then (f(7)(3) @)|ip = v for all f € X, types 7, A\-preterms 3, &, v € TP(%),
and 1 <17 <n.

3. If w;|p, = v, then (m(r) 4y)}ip = v for all De Bruijn indices m, types 7, A-preterms
TUp,v € TP(X), and 1 < i < n.

4. If u|, = v, then (A(7) u)|1,, = v for all types 7 and A-preterms u,v € TAPTe(%),

8 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

We extend these notions to preterms as follows. Given a fn-normalizer |g,, a list of natural
numbers p and s,t € TP(X), we say that p is an orange position of t, and s is an orange
subterm of t at p w.r.t. |g,, written t|, = s, if (tlg,)|p = slg,-

The context u[] surrounding an orange subterm s of ul[s| is called an orange context.
The notation u< sy, or u¢s) indicates that s is an orange subterm in u[s] at position p, and
u¢ Y indicates that u[| is an orange context.

Example 3.3. Whether a preterm is an orange subterm of another preterm depends on the
chosen Sn-normal form |g,. For example, the preterms f0 and 0 are orange subterms of Af0
in n-long form, but they are not orange subterms of the n-short form f of the same term.

Remark 3.4. The possible reasons for a subterm not to be orange are the following:

— It is applied to arguments.
— It occurs inside a parameter.
— It occurs inside an argument of an applied variable.

Definition 3.5 (Yellow Subterms). Let |3, be a Sn-normalizer. A yellow subterm w.r.t.
lgy is an orange subterm that does not contain free De Bruijn indices. A yellow position
w.r.t. |g, is an orange position that identifies a yellow subterm. The context surrounding a
yellow subterm is called a yellow context.

Lemma 3.6. Whether a preterm is a yellow subterm of another preterm is independent of
bgn- (On the other hand, its yellow position may differ.)

Proof. 1t suffices to show that a single n-expansion or n-contraction from a S-reduced M-
preterm s into another S-reduced A-preterm cannot remove yellow subterms. This suffices
because only such rn-conversations are needed to transform a S-normal n-long form into a
B-normal n-short form and vice versa.

Assume s has a yellow subterm at yellow position p. Consider the possible forms that a
(B-reduced A-preterm s can have:

— z(7) t for a variable x(r) and A\-preterms ¢;

— f(7)(u) t for a symbol f, types 7, and A\-preterms u, t;
— n(r) t for a De Bruijn index n(r) and \-preterms ¢;
— X(7) t for a A-preterm t.

Consider where an n-conversion could happen: If an n-expansion takes place at the left-hand
side of an application, the result is not S-reduced. If an n-reduction takes place at the
left-hand side of an application, the original A-preterm is not S-reduced. If the yellow
subterm at p does not overlap with the place of n-conversion, the n-conversion has no
effect on the yellow subterm. This excludes the case where the n-conversion takes place in
an argument of an applied variable or in a parameter. So the only relevant subterms for
n-conversions are (a) the entire A-preterm s, (b) a subterm of ¢ in f(7)(@) ¢, (c) a subterm of
t in n(r) ¢, or (d) a subterm of ¢ in A(7) ¢.

Next, we consider the possible positions p. If the n-conversion takes place inside of
the yellow subterm, it certainly remains orange because orange subterms only depend on
the outer structure of the A-preterm. It also remains yellow because 7-conversion does not
introduce free De Bruijn indices. This covers in particular the case where p is the empty list.
Otherwise, the yellow subterm at p is also (i) a yellow subterm of ¢ in f(7)(a) ¢, (ii) a yellow
subterm of ¢ in n(r) t, or (iii) a yellow subterm of ¢ in A\(7) ¢. In cases (b), (c), and (d), we
can apply the induction hypothesis to ¢ or ¢ and conclude that the yellow subterm of ¢ or ¢

OPTIMISTIC LAMBDA-SUPERPOSITION 9

remains yellow and thus the yellow subterm of s at p remains yellow as well. In case (a), we
distinguish between the cases (i) to (iii) described above:

(i) Then the only option is an n-expansion of f(7)(u) ¢ to A f(7)(u) t 0. Clearly, the yellow
subterm in ¢ remains yellow, although its yellow position changes.
(ii) Analogous to (i).
(iii) Here, one option is an n-expansion of At to A At 0, which can be treated analogously
to (i).

The other option is an n-reduction of A ¢ to ', where t = ¢’ 0. We must show that a
yellow subterm of ¢ is also a yellow subterm of #'. Since a yellow subterm of ¢ cannot
contain the free De Bruijn index 0, the A-preterm ¢’ must be of the form v w, where
the preterm v is a symbol or a De Bruijn index and the yellow subterm of t = v w 0
must be a yellow subterm of one of the arguments w. Then it is also a yellow subterm
of vw =1 []

Definition 3.7 (Green Subterms). A green position is an orange position p such that each
orange subterm at a proper prefix of p is nonfunctional. Green subterms are orange subterms
at green positions. The context surrounding a green subterm s of u[s] is called a green
context. The notation u<s», or u<s) indicates that s is a green subterm in u[s] at position
p, and u< > indicates that u[| is a green context.

Clearly, green subterms can equivalently be described as follows: Every term is a green
subterm of itself. If u is nonfunctional, then every green subterm of one of its arguments
s; is a green subterm of u = f(f) 5 and of u = n t. Moreover, since n-conversions can occur
only at functional subterms, both green subterms and green positions do not depend on the
choice of a fn-normalizer g, .

Example 3.8. Let ¢ be a type constructor. Let a be a type variable. Let z : ¢ — ¢ be a
variable. Let a: ¢, f: Ila. ¢ = (¢ = ¢) = a, and g : ¢« — ¢ — ¢ be constants. Consider the
term f(a)(a) (Ag(za)0). Its green subterms are the entire term (at position €) and Ag(za)0
(at position 1). Its yellow subterms are the green subterms and x a (at position 1.1.1 w.r.t.
1Bniong OF at position 1.1 w.r.t. |gpshort). Its orange subterms w.r.t. |gpong are the yellow
subterms and g (x a) 0 (at position 1.1) and 0 (at position 1.1.2). Using |gyshort, the orange
subterms of this term are exactly the yellow subterms.

For positions in clauses, natural numbers are not appropriate because clauses and literals
are unordered. A solution is the following definition:

Definition 3.9 (Orange, Yellow, and Green Positions and Subterms in Clauses). Let C be a
clause, let L = s &~ t be a literal in C, and let p be an orange position of s. Then we call the
expression L.s.p an orange position in C, and the orange subterm of C' at position L.s.p is the
orange subterm of s at position p. Yellow positions/subterms and green positions/subterms
of clauses are defined analogously.

Example 3.10. The clause C = K V L with K = fa % b and L = ¢ = f a contains
the orange subterm a twice, once at orange position L.(f a).1 and once at orange position
K.(fa).l.

10 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

3.2. Complete Sets of Unifiers up to Constraints. Most of our calculus rules can
be used in conjunction with Huet-style preunification, full unification, and various variants
thereof. Only some rules require full unification. To formulate the calculus in full generality,
we introduce the notion of a complete set of unifiers up to constraints. The definition closely
resembles the definition of a complete set of unifiers, but allows us to unify only partially
and specify the remainder in form of constraints.

Definition 3.11. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers up to constraints is a set P
whose elements are pairs, each containing a substitution and a set of constraints, with the
following properties:

— Soundness: For every (0,T) € P and unifier p of T, op is a unifier of S.
— Completeness: For every unifier § of S, there exists a pair (0,7") € P and a unifier p of T
such that zop = z0 for all z € X.

Given a set of constraints S and a set X of variables, we let CSUuXptO(S) denote an
arbitrary complete set of unifiers upto constraints with the following properties. First, to
avoid ill-typed terms, we require that for the substittions in CSUY*(S) unify the types of
equated terms in S. In practice, this is not a severe restriction because type unification
always terminates. Second, we require that the substitutions ¢ in CSU“XptO(S) are idempotent
on X—i.e., xoo = xo for all x € X, which can always be achieved by renaming variables.

The set X will consist of the free variables of the clauses that the constraints .S originate

from and will be left implicit.

Example 3.12. For the constraint ya =f (2 b) and X = {y, 2z}, the set {(o,{wa=zb})}
with ¢ = {y — Af (w0)} is a complete set of unifiers up to constraints. It is sound
because for every unifier p of wa = z b, the subsitution op is a unifier of ya = f (2 b)
since (ya =f (z2b))o = (f (wa) = f (zb)). It is complete because, for every unifier ¢
of ya = f (zb), the term y# must be of the form A f ¢ for some preterm ¢, and then the
substitution p = {w — At,z — 20} is a unifier of wa = z b and fulfills xop = 26 for

x € {y,z}.

Definition 3.13. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers is a set P of unifiers of S
such that for each unifier 8 of S, there exists a substitution ¢ € P and a substitution p such
that xop = «0 for all x € X.

Given a set of constraints S and a set X of variables, we write CSUx (.S) or CSU(.S) for
an arbitrary complete set of unifiers. Again, we require that all elements of CSU(.S) unify at
least the types of the terms pairs in S and that all elements of CSU(S) are idempotent.

Equivalently, we could define a complete set of unifiers as a set P of substitutions such
that {(c,0) | o € P} is a complete set of unifiers up to constraints.

The definitions above require xop = x6 only for variables z € X, not for other variables,
because the substitutions should be allowed to use auxiliary variables. For instance, in
Example 3.12 above, for most unifiers 6, it is impossible to find a suitable p that fulfills
xop = xf for all variables z, including x = w.

When choosing a strategy to compute complete sets of unifiers up to constraints, there
is a trade-off between how much computation time is spent and how precisely the resulting
substitutions instantiate variables. At one extreme, we can compute a complete set of unifiers,
which instantiates variables as much as possible. At the other extreme, the set containing

OPTIMISTIC LAMBDA-SUPERPOSITION 11

only the identity substitution and the original set of constraints is always a complete set
of unifiers up to constraints, demonstrating that there exist terminating procedures that
compute complete sets of unifiers up to constraints. In between these extremes lies Huet’s
preunification procedure [16,19]. A good compromise in practice may be to run Huet’s
preunification procedure and to abort after a fixed number of steps, as described in the
following subsection.

3.3. A Concrete Unification Strategy. As a strategy to compute CSU"P'®, we suggest
the following procedure, which is a bounded variant of Huet’s preunification procedure,
adapted to cope with polymorphism and parameters. This approach avoids coping with
infinite streams of unifiers (except for rules that must use CSU instead of CSU"P*) and
resembles Vampire’s strategy [11].

Analogously to what we describe below, for CSU, one can extend procedures for the
computation of complete sets of unifiers, such as Vukmirovié¢ et al.’s procedure [31], to cope
with parameters.

Definition 3.14 (Flex-Flex, Flex-Rigid, Rigid-Rigid). Let s =t be a constraint. We write
s and ¢t in B-normal 7-long form as s = A---Aawuy ---up and t = X---Abvy ---vy, where
a and b are variables, De Bruijn indices, or symbols (possibly with type arguments and
parameters) and u; and v; are preterms. If a and b are both variables, we say that s = ¢
is a flex-flex constraint. If only one of them is a variable, we say that s =t is a flex-rigid
constraint. If neither a nor b is a variable, we say that s =t is a rigid-rigid constraint.

The Huet preunification procedure computes a substitution that unifies a set of con-
straints up to flex-flex pairs. It works as follows. Given a finite set of constraints Sy, we
construct a search tree whose nodes are either failure nodes % or pairs (o, .S) of a substitution
o and a set S of constraints. The root node is the pair ({},Sy). Any node (o, S) where S
contains only flex-flex constraints is a successful leaf node. All failure nodes ¥ are also leaf
nodes. To construct the children of any other node (o, S), we pick one of the constraints
s =t € S that is not a flex-flex constraint and apply the following rules:

— Type unificaiton: We attempt to unify the types of s and ¢, which can be done using
a first-order unification procedure. If the types are unifiable with a most general type
unifier p, we add a child node (op, Sp). Otherwise, we add a child node .

— If the types of s and ¢ are equal, we write s = A---Aauj ---upandt =X---Abvy ---vy
as in Definition 3.14 and apply the following rules:

— Rigid-rigid cases: Let S’ = S\ {s =t}.
x If a and b are different De Bruijn indices, or if one of them is De Bruijn index and
the other a symbol, we add a child node X.
x If @ and b are identical De Bruijn indices, we add a child node (0,5 U {u; =

V1,.e, Up = Upl).
« If a =f(T)(s1,...,s;) and b = g(7)(t1,...,t;) with f # g, we add a child node X.
x If a = f(7)(s1,...,8;) and b = f(0)(t1,...,tx) where 7 and © are not unifiable, we

add a child node %.

x If a = f(T)(s1,...,8;) and b = f(0)(t1,...,tx) where 7 and U are unifiable with a
most general type unifier p, we add a child node (op, (S"U{s1 =t1,...,8; = tg,u1 =
V1, Up = Upt)P).

— Flex-rigid cases: Let 7y — --- — 7, — 7 be the type of a and v1 — --- = v, — 7 be
the type of b.

12 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

x Imitation: If a is a variable x and b is either a De Bruijn index or a symbol
(possibly with type arguments and parameters), we add a child node (op, Sp) with
p={x =))by (p—1) -+ 0) -+ (yg (p—1) --- 0)}, where yi, ..y,
are fresh variables with y; of type 7 — --- — 7, — v; for each i.

x Projection: If a is a variable x and b is either a De Bruijn index or a symbol
(possibly with type arguments and parameters), then for each 0 < i < p where
7 =1 — .-+ — 7, — 7 for some 7{,..., 7, we add a child node (op, Sp) with
p={x > Mr)-- M) i (y (p—1) -+ 0) - (g (p—1) -~ 0)}, where yi, ...,y
are fresh variables with y; of type 74 — -+ — 7, — T]/~ for each j.

* The same applies with the roles of a and b swapped.

Ultimately, the tree’s leaf nodes are either failure nodes % or success nodes (o, S), where S
contains only flex-flex constraints and o is the corresponding preunifier. Collecting all the
preunifiers in the leaves yields the result of the standard, i.e., unbounded, Huet preunification
procedure.

We propose to use a bounded variant instead to ensure that unification always terminates.
In the bounded version, we construct the tree only up to a predetermined depth. Collecting
all unifiers and their associated constraints in the leaves of the resulting tree also yields
a complete set of unifiers up to constraints, which we can use in the role of the CSU"PY
function of our core inference rules.

In addition, following Vukmirovi¢ et al. [31], we propose to extend this procedure with
algorithms for decidable fragments such as pattern unification [22], fixpoint unification [19],
and solid unification [31]. When one of these fragments applies to one of the constraints
s =t of a node (0, 5), the most general unifier p for this constraint can be determined in
finite time, and we can add a single child node (op, (S\ {s = t})p) instead of the child nodes
that would be added by the standard procedure.

Lemma 3.15. The above procedure yields a complete set of unifiers up to constraints
(Definition 3.11).

Proof. Let Sy be a set of constraints. Consider a search tree constructed by the above
procedure. We must show that the successful leaves P of the tree form a complete set of
unifiers up to constraints, i.e., we must show:

— Soundness: For every (0,7") € P and unifier p of T', op is a unifier of Sp.
— Completeness: For every unifier 6 of Sy, there exists a pair (¢,7) € P and a unifier p of
T such that xop = 26 for all x € X.

For soundness, we prove the following more general property: For every node (o, T) of the
tree and every unifier p of T', the substitution op is a unifier of Sy. It is easy to check that
the initial node has this property and that for each of the rules above, the constucted child
node has the property if the parent node has it. Thus, soundness follows by induction on
the structure of the tree.

For completeness, we prove the following more general property: Given a node (g, Up)
of the tree and a unifier 6y of Uy, there exists a pair (w, V') € P and a unifier © of V' such
that xwm = xogby for all x € X.

Since the search tree is clearly finite, we can apply structural induction on the tree. So
we may assume that the property holds for all child nodes of (o¢, Up). We proceed by a case
distinction analogous to the cases describing the procedure above.

OPTIMISTIC LAMBDA-SUPERPOSITION 13

If no decidable fragment applies to Uy and Uy contains only flex-flex pairs or if the depth
limit has been reached, then (og,Up) is a leaf node. Then (0g,Up) € P and the property
holds with = = 0y.

Otherwise, if a decidable fragment applies to a constraint s =t € Uy and provides a
most general unifier p, then we have a child node (ogp, (Up \ {s = t})p). Since p is a most
general unifier, there exists a substitution 6; such that yfy = ypf; for all variables y in
xop with € X and for all variables y in Up. So 6, is a unifier of (Up \ {s = t})p and by
the induction hypothesis, there exists a pair (w,V) € P and a unifier 7 of V' such that
zwr = xogpb for all x € X. Thus, xwr = xogpl; = xopby for all x € X, as required.

Otherwise, no decidable fragment applies to Uy and Uy contains a pair that is not
flex-flex. Then our procedure picks one such pair s =t € Uj.

If the types of s and ¢ are not equal, then they must be unifiable because 6 is a unifier.
So there exists a child node (ogp, Upp), where p is the most general type unifier of s and ¢.
We can then proceed as in the decidable fragment case above.

Otherwise, the types of s and t are equal. Let s = A--- Aauy ---upandt = X--- Xbvy - - - vy
as in Definition 3.14.

If s =t is a rigid-rigid pair, then a and b must be unifiable because 6y is a unifier. So a
and b are either identical De Bruijn indices or unifiable symbols. In both cases, we can then
proceed analogously to the decidable fragment case above.

If s =t is a flex-rigid pair, we assume without loss of generality that a is a variable x.
Since 6y is a unifier of s and ¢t and parameters cannot contain free De Bruijn indices, the
term afy must be either of the form A --- XA b s for some terms § or of the form A --- A s
for some De Bruijn index ¢ and terms 5. In the first case, we apply the induction hypothesis
to the child node produced by the imitation rule, and in the second case, we apply the
induction hypothesis to the child node produced by the projection rule. In both cases,
given the substitution p used by the rule, it is easy to construct a substitution 6; such that
Y0y = ypb; for all relevant variables y. Then we can proceed as in the decidable fragment
case above. []

For an efficient implementation, it is important to Bn-normalize terms and apply
substitutions lazily, similarly to the approach of Vukmirovi¢ et al. [31].

3.4. Term Orders and Selection Functions. Our calculus is parameterized by a relation
> on constrained terms, constrained literals, and constrained clauses. We call > the term
order, but it need not formally be a partial order. Moreover, our calculus is parameterized
by a literal selection function.

The original A-superposition calculus also used a nonstrict term order 2~ to compare
terms that may become equal when instatiated, such as x b 77 x a, where b = a. However,
contrary to the claims made for the original A-superposition calculus, employing the nonstrict
term order can lead to incompleteness [7], which is why we do not use it in our calculus.

Moreover, the original A-superposition calculus used a Boolean selection function to
restrict inferences on clauses containing Boolean subterms. For simplicity, we omit this
feature in our calculus because an evaluation did not reveal any practical benefit [26].

Definition 3.16 (Admissible Term Order). A relation > on constrained terms and on
constrained clauses is an admissible term order if it fulfills the following criteria, where >~
denotes the reflexive closure of >:

(O1) the relation > on ground terms is a well-founded total order;

14 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

(02) ground compatibility with yellow contexts: s’ > s implies t{s"y = t{ s> for ground
terms s, ', and t;
ground yellow subterm property: t{s» > s for ground terms s and t;
u > L > T for all ground terms u ¢ {T,L};
u = u diff (1, v)(s, t) for all ground types 7,v and ground terms s,t,u: 7 — v;
the relation > on ground clauses is the standard extension of > on ground terms via
multisets [1, Sect. 2.4];
(O7) stability under grounding substitutions for terms: ¢[T7] > s[S] implies t6 >~ s for all
grounding substitutions 6 such that 70 and S0 are true;
(O8) stability under grounding substitutions for clauses: D[T] = C[S] implies D8 = C0
for all grounding substitutions € such that 70 and S0 are true;
(09) transitivity on constrained literals: the relation > on constrained literals is transitive;
(010) for all terms ¢ and s such that ¢ > s and all substitutions 6 such that for all type
variables «, the type af is ground and such that for all variables z, all variables in
x6 are nonfunctional, if sf contains a variable outside of parameters, then ¢ must
also contain that variable outside of parameters.

(03)
(04)
(05)
(06)

Definition 3.17 (Maximality). Given a term order >, a literal K of a constrained clause
C[S] is mazimal if for all L € C such that L[S] > K[S], we have L[S] < K[S]. It is
strictly maximal if it is maximal and occurs only once in C.

In addition to the term order, our calculus is parameterized by a selection function:

Definition 3.18 (Literal Selection Function). A literal selection function is a mapping
from each constrained clause to a subset of its literals. The literals in this subset are called
selected. Only negative literals and literals of the form ¢ ~ L may be selected.

Based on the term order and the selection function, we define eligibility as follows:

Definition 3.19 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution ¢ in C[S]
if it is selected in C[S] or there are no selected literals in C[S] and Lo is (strictly) maximal
in (C[S])e.

A green position L.s.p of a clause C[S] is eligible w.r.t. a substitution o if the literal L
is either negative and eligible or positive and strictly eligible (w.r.t. o in C[S]); and L is of
the form s &~ t € C such that (s[S])o & (¢t[S])o.

3.5. Concrete Term Orders. A companion article [4] defines two concrete term orders
fulfilling the criteria of Definition 3.16: AKBO, inspired by the Knuth—Bendix order, and
ALPQO, inspired by the lexicographic path order. Since the companion article defines the orders
only on terms, we extend =po and =ypo to literals and clauses via the standard extension
using multisets [1, Sect. 2.4]. We extend the orders to constrained terms, constrained literals,
and constrained clauses by ignoring the constraints.

Theorem 3.20. Let =ypo denote the strict variant of A\KBO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols, a function w
assigning weights to symbols, a constant wyy defining the weight of De Bruijn indices, and a
function K assigning argument coefficients to symbols. Assume that these parameters fulfill
w(T)=w(Ll) =1, wgp > w(diff), f > L > T for all symbols f ¢ {T,L}, and K(diff,i) =1

for every i. Using the extension defined above, =po 15 an admissible term order.

OPTIMISTIC LAMBDA-SUPERPOSITION 15

Proof. For most of the criteria, we use that by Theorems 4.11 and 5.11 of the companion
article, =g\po is the restriction of =y to ground terms.

(O1) By Theorems 3.8 and 3.10 of the companion article, >gwkbo is a total order. By
Theorem 3.11 of the companion article, it is well founded.

(02) By Theorem 3.14 of the companion article, >gpo is compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.15 of the companion article, >=gwbo €njoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.16 of the companion article, u >gwbo L >grkbo T for all ground terms
u ¢ {T,L}, using our assumptions about the weight and precedence of T and L.

(O5) By Theorem 3.17 of the companion article, u >gwbo u diff (7, v)(s,t) for all ground types
7,v and ground terms s,t,u : T — v, using our assumptions about the weight and
argument coefficients of diff.

(O6) By definition of our extension of >)kpo to clauses.

(O7) By Theorems 4.10 and 5.10 of the companion article. Since we ignore the constraints in
the order, we also have stability under substitutions for constrained terms.

(O8) Using the Dershowitz—Manna definition [15] of a multiset, it is easy to see that stability
under substitutions for terms implies stability under substitutions for clauses. Since
we ignore the constraints in the order, we also have stability under substitutions for
constrained clauses.

(09) By Theorem 5.13 of the companion article, >)kpo iS transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals. Since we ignore
the constraints in the order, it is also transitive on constrained literals.

(010) By Theorem 5.14 of the companion article.

[

Theorem 3.21. Let =ypo denote the strict variant of A\LPO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols and a watershed
symbol ws. Assume that f > L > T for all symbols f ¢ {T,L}, that L < ws, and that
diff <ws. Using the extension defined above, =ypo 5 an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.20 and 5.17 of the companion
article, =g\ po is the restriction of =5, to ground terms.

(O1) By Theorems 3.21 and 3.22 of the companion article, =gNpo 18 a total order. By
Theorem 3.23 of the companion article, it is well founded.

(O2) By Theorem 3.24 of the companion article, ~gpo 1S compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.25 of the companion article, >gipo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.26 of the companion article, u >gipo L >gnpo T for all ground terms
u ¢ {T, L}, using our assumptions about the precedence of T and L.

(O5) By Theorem 3.27 of the companion article, u >gnpo w diff (7,v)(s,t) for all ground types
7,v and ground terms s,t,u : T — v, using our assumption about the precedence of diff.

(O6) By definition of our extension of >ype to clauses.

(O7) By Theorems 4.19 and 5.16 of the companion article. Since we ignore the constraints in
the order, we also have stability under substitutions for constrained terms.

(O8) Using the Dershowitz—Manna definition [15] of a multiset, it is easy to see that stability
under substitutions for terms implies stability under substitutions for clauses. Since

16 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

we ignore the constraints in the order, we also have stability under substitutions for
constrained clauses.

(09) By Theorem 5.19 of the companion article, >jpo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals. Since we ignore
the constraints in the order, it is also transitive on constrained literals.

(010) By Theorem 5.20 of the companion article.

[

3.6. The Core Inference Rules. The optimistic A-superposition calculus consists of the
following core inference rules, which a priori must be performed to guarantee refutational
completeness. The calculus is parameterized by an admissible term order > and a selection
function hsel. We denote this calculus as HInf™""*¢! or just HInf.

Each of our inference rules describes a collection of inferences, which we formally define
as follows:

Definition 3.22. An inference ¢ is a tuple (C1,Co, ..., Cp41) of constrained clauses, written
c, Cy - C,
Cn+1
The constrained clauses Cy,Co, ..., C,, are called premises, denoted by prems(t), and Cy41

is called conclusion, denoted by concl(c). The clause C,, is called the main premise of
t, denoted by mprem(t). We assume that the premisses of an inference do not have any
variables in common, which can be achieved by renaming them apart when necessary.

Our variant of the superposition rule, originating from the standard superposition
calculus, is stated as follows:
D

——
D'vit=t[T] C<uy[S]
(D" v C<th)a [U]
(o0,U) € CSU"PY(T, S|t = u);

u is not a variable;

uo is nonfunctional;

(t[T]o 2 (#'[TT)o;

the position of u is eligible in C'[S] w.r.t. o;
t ~ t' is strictly maximal in D[T] w.r.t. o;
there are no selected literals in D[T7].

NSOtk WD

The rule FLUIDSUP simulates superposition below applied variables:
D

—
D'vit=t[T] C<cuy[S]
(D' v C<zt'> T, S])o
with the following side conditions, in addition to SUP’s conditions 3 to 7:

1. 0 € CSU(2 t = u);
2. u is not a variable but is variable-headed;
8. z is a fresh variable;

FruipSup

OPTIMISTIC LAMBDA-SUPERPOSITION 17

9. (zt)o # (2 t)o;
10. zo # X 0.
The equality resolution rule EQRES and the equality factoring rule EQFACT also originate
from the standard superposition calculus:
C C

——
C'Vustad [S] C'Vu =v vVu=mov[S]
EQREs EQFAcT
C'o [U] (C'"Vozgd Vux)o U]

Side conditions for EQRES:

1. (o,U) € CSUP (S u = u');

2. u # u is eligible in C [S] w.r.t. o.
Side conditions for EQFACT:

1. (o,U) € CSU™Y™(S 4 = u');

2. u v is eligible in C [S] w.r.t. o;

3. there are no selected literals in C [S];
4. (u[ST)o 2 (v [S])e-

The following rules CLAUSIFY, BooLHO1sT, LOOBHOIST, and FALSEELIM are responsi-
ble for converting Boolean terms into clausal form. The rules BooLHoIST and LOOBHOIST
each come with an analogue, respectively called FLUIDBOOLHOIST and FLUIDLOOBHOIST,
which simulates their application below applied variables.

C'Vs=~t|[9]
(C"Vv D[S])o
with the following side conditions:
1. 0 € CSU(s = ¢, t =1');
2. s &t is strictly eligible in C [S] w.r.t. o;
3. s is not a variable;
4

. the triple (s',#', D) is one of the following, where « is a fresh type variable and x and y
are fresh term variables:

CLAUSIFY

(zAy, T, z=T) (zAy, T, y=T) (xAy, L, zr=LlVvy~l)
(@Vy, T,z=TVvy=T) (zVy, L, z~1) (zVy, L, y~1)
(x—)y,T a:~J_\/y~T) (r—=y, L, z~T) (x—=y, L, y=1)
(9695< >y7T T % y) (z#la)y, L, z~y)
(nx, T, z~1) (nx, L, z2~T)

C S C S

<U>[H] BooLHoisT <u>[[]] LooBHoisT

(C<L>VurTI[S])o (C<T>Vur L[S])o

each with the following side conditions:

1. o is the most general type substitution such that uo is of Boolean type (i.e., the identity
if u is of Boolean type or {a +— o} if u is of type « for some type variable a);

2. w is not a variable and is neither T nor L;

18 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

©w

the position of w is eligible in C' [S] w.r.t. o;
4. the occurrence of « is not in a literal of the form u~ 1L oru~T.

C<u [S]
(C<zLoVvaexTI[S))o

1. u is not a variable but is variable-headed;

uo is nonfunctional;

x is a fresh variable of Boolean type, and z is a fresh variable of function type from
Boolean to the type of u;

o€ CSU(z x = u);

(: Lo # (= 2)o

zo # A\ 0;

xo # T and xo # L;

the position of w is eligible in C' [S] w.r.t. o.

Cluy [S]
(C<zTyVar L[S])o

with the same side conditions as FLUIDBOOLHOIST, but where L is replaced by T in
condition 5.

FruipBooLHoisT

W

0N ot

FruibLooBHOIST

c
———

C'Vs~t[9]
C'o [U]

FALSEELIM

with the following side conditions:
1. (o,U) € CSUPY(S s = 1,t=T);
2. s &t is strictly eligible in C' [S] w.r.t. o.

The argument congruence rule ARGCONG and the extensionality rule EXT convert
functional terms into nonfunctional terms. The rule EXT also comes with an analogue
FLuibEXT, which simulates its application below applied variables.

C
—_——
C'Vs=~s[9]

p p ARGCONG
C'oVsox~sox[So]

with the following side conditions:

1. o is the most general type substitution such that so is functional (i.e., the identity if s is
functional or {a — (8 —)} for fresh § and 7 if s is of type a for some type variable a);

2. s~ ¢ is strictly eligible in C' [S] w.r.t. o;

3. z is a fresh variable.

C<uy [5]
Co<y> V uo (diff (1, v)(uo,y)) % y (diff (1, v)(uo, y)) [So]

with the following side conditions:

ExXT

OPTIMISTIC LAMBDA-SUPERPOSITION 19

1. o is the most general type substitution such that uo is of type 7 — v for some 7 and v;
2. y is a fresh variable of the same type as uo;
3. the position of w is eligible in C' [S] w.r.t. o.

C<uy [9]
(C<zyp Vo (diff (o, B)(x,y)) # y (diff{a, B)(z,y)) [S])o

with the following side conditions:

FLuiDEXT

1. u is not a variable but is variable-headed;

2. uo is nonfunctional;

3. x and y are fresh variables of type o — 3, and z is a fresh variable of function type from
a — B to the type of u;

o € CSU(S, zx = u);

(zz)o # (zy)o;

zo # \0;

the position of u is eligible in C' [S] w.r.t. o.

NS otk

Our calculus also includes the following axiom (i.e., nullary inference rule), which
establishes the interpretation of the extensionality Skolem constant diff.

DirrF

y (diffex, B)(y, 2)) % =z (diff (@, B)(y, 2)) Vy o = z 2

3.7. Redundancy. Our calculus includes a redundancy criterion that can be used to delete
certain clauses and avoid certain inferences deemed redundant. The criterion is based on a
translation to ground monomorphic first-order logic.

Let ¥ be a higher-order signature. We require ¥ to contain a symbol diff : I, 8. (v — 3,
a — () = «a. Based on this higher-order signature, we construct a first-order signature ¥ (X)
as follows. The type constructors are the same, but — is an uninterpreted symbol in the
first-order logic. For each ground higher-order term of the form f(7)(a) : 71 — -+ — 7p, — T,
with m > 0, we introduce a first-order symbol fZ : 74 X - -+ X 7,,, = 7. Moreover, we introduce
a first-order symbol fun; : 74 X - -+ X 7, = (7 — v) for each expression ¢ obtained by replacing
each outermost proper yellow subterm in a higher-order term of type 7 — v by a placeholder
symbol I, where 74, ..., 7, are the types of the replaced subterms in order of occurrence.

We define an encoding F from higher-order ground terms to first-order terms:

Definition 3.23. For ground terms ¢, we define ¥ recursively as follows: If ¢ is functional,
then let ¢ be the expression obtained by replacing each outermost proper yellow subterm
in ¢ by the placeholder symbol [0, and let F(t) = funy (¥ (8,)), where §,, are the replaced
subterms in order of occurrence. Otherwise, ¢ is of the form f(7)(@) t,,, and we define
F(t) = (F(t1), .., F(tm))-

For clauses, we apply F on each side of each literal individually.
Example 3.24. F(\ (f (A1) (A (A 0)))) = funy ¢ (x 1) oy (funx o(funy o).

Remark 3.25. A simpler yet equivalent formulation of the redundancy criterion can be
obtained by defining ¥ (t) = fun; for functional terms ¢, without using the O symbol. The
completeness proof, however, would become more complicated.

20 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Lemma 3.26. The map F is a bijection between higher-order ground terms and first-order
ground terms.

Proof. We can see that F(s) = (t) implies s = ¢ for all ground s and t by structural
induction on ¥ (s). Moreover, we can show that for each first-order ground term ¢, there
exists an s such that F(s) = t by structural induction on ¢. Injectivity and surjectivity
imply bijectivity. []

We consider two different semantics for our first-order logic: =g and |=,). The
semantics =g, is the standard semantics of first-order logic. The semantics =, restricts
Efol to interpretations J with the following properties:

— Interpreted Booleans: The domain of the Boolean type has exactly two elements, [T]; and
[L];, and the symbols =, A, V, =, &7, %" are interpreted as the corresponding logical
operations.

— Extensionality w.r.t. diff: For all ground u,w : 7 — v, if J g1 F (u diff(1,0)(s,1)) ~
F(w diff(1,v)(s,t)) for all ground s,t: 7 — v, then J ¢ F(u) = F(w).

— Argument congruence w.r.t. diff: For all ground uw,w,s,t: 7 — v, if I g F(u) = F(w),
then J =1 F (u diff(r,v)(s,t)) =~ F (w diff (T, v)(s,t)).

As another building block of our redundancy criterion, we introduce the notion of trust.
As a motivating example, consider the clauses b % a and b = a, where b > a. Clearly, the
empty clause can be derived via a SUP and a EQRES inference. If we replace the clause
b ~ a with the logically equivalent clause z % a [x = b], however, an empty clause with
satisfiable constraints cannot be derived because SUP does not apply at variables. In this
sense, the clause b # a is more powerful than z % a [x = b]. Technically, the reason for
this is that the calculus is only guaranteed to derive contradictions entailed by so-called
variable-irreducible instances of clauses, and the instance of x % a [z = b] that maps z to
b is not variable-irreducible. Since variable-irreducibility cannot be computed in general,
when we replace a clause with another, we use the notion of trust to ensure that for every
variable-irreducible instance of the replaced clause, there exists a corresponding variable-
irreducible instance of the replacing clause. Concretely, for any variable that occurs in a
constraint or in a parameter of the replacing clause, there must exist a variable in a similar
context in the replaced clause. The formal definition is as follows.

Definition 3.27 (Trust). Let C be a ground instance of C[S] € (i1 and Dp be a ground
instance of D[T] € Gy. We say that the 6-instance of C[S] trusts the p-instance of D[T] if
for each variable z in D,

(i) for every literal L € D containing = outside of parameters, there exists a literal K € C'
and a substitution o such that 26 = zop for all variables z in C' and L < Ko; or
(ii) x neither occurs in parameters in D nor appears in 7.

The most general form of redundancy criteria for constrained superposition calculi are
notoriously difficult to apply to concrete simplification rules. In the spirit of Nieuwenhuis
and Rubio [23], we therefore introduce a simpler, less general notion of redundancy that
suffices for most simplification rules. We provide a simple criterion for clauses and one for
inference rules.

OPTIMISTIC LAMBDA-SUPERPOSITION 21

3.7.1. Simple Clause Redundancy. Our redundancy criterion for clauses provides two
conditions that can make a clause redundant. The first condition applies when the ground
instances of a clause are entailed by smaller ground instances of other clauses. It generalizes
the standard superposition redundancy criterion to higher-order clauses with constraints.
The second condition applies when there are other clauses with the same ground instances.
It can be used to justify subsumption. For this second condition, we fix a well-founded
partial order 1 on (G1, which prevents infinite chains of clauses where each clause is made
redundant by the next one.

Definition 3.28 (Simple Clause Redundancy). Let N C (y and C[S] € Gy. We call C[S]
simply redundant w.r.t. N, written C[S] € HRed¢(N), if for every CO € Gnd(C[S]) at least
one of the following two conditions holds:

1. There exist an indexing set I and for each i € I a ground instance D;p; of a clause
D;[T;] € N, such that
(a) F({Dipi | i € I}) Fox F(CO);
(b) for alli € I, D;p; < C6; and
(c) for all i € I, the §-instance of C[S] trusts the p;-instance of D;[T;].
2. There exists a ground instance Dp of some D[T] € N such that
(a) Dp =C9;
(b) C[S] o D[T]; and
(c) the f-instance of C[S] trusts the p-instance of D[T].

Remark 3.29. Although the calculus is refutationally complete for any choice of 1, we
propose the following definition for J. Given a clause C[S] with nonempty S and a clause
D with no constraints, we define C[S] 2 D. For two clauses C' and D with no constraints,
following Bentkamp et al. [8, Sect. 3.4], we propose to define C' 1 D if either C' is larger
than D in syntactic size (i.e., number of variables, constants, and De Bruijn indices), or if C'
and D have the same syntactic size and C' contains fewer distinct variables than D.

3.7.2. Simple Inference Redundancy. To define inference redundancy, we first define a
calculus FInf on ground first-order logic with Booleans. It is parameterized by a relation >
on ground first-order terms. For simplicity, there is no selection function, but our notion
of eligibility is adapted to overapproximate any possible selection function as follows. A
literal L € C' is (strictly) eligible in C if L is negative or if L is of the form ¢ ~ L or if L is
(strictly) maximal in C'. A position L.s.p of a clause C is eligible if the literal L is of the
form s = t with s >t and L is either negative and eligible or positive and strictly eligible.

We define green subterms on first-order terms as follows. Every term is a green subterm
of itself. Every direct subterm of a nonfunctional green subterm is also a green subterm. In
keeping with our notation for higher-order terms, we write t<{u)> for a term t containing a
green subterm wu.

22 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

D c

—— —
D'vtxt C<t C'Vugu

FSup —— FEQRES

D' v C<t> !
c
C'Vux~iv Vu=ov C'Vsa~t
FEQFaAcT ——— FCLAUSIFY
C'Vogdr Vuxv 'V D
C<u C<lu
w FBooLHoIsT W FLooBHOIST
C<LOoVuxT C<T>Vur_1l
c
e N—
(C'vL=~T)
o FFALSEELIM
C
C'v ~ !
(Flo) ~ F(s)) FArRGCONG
C' Vv F (s diff(r,v)(u,w)) ~ F (s diff (7, v)(u, w))

C<Fup FExT
)

C<F (w)> V F(udiff(1,v)(u, w)) % F(w diff (1, v)(u, w))

FDI1rF
F (uw diff (7, v)(u, w)) % F(w diff (7, v)(u,w)) V Fus) = F(ws)

Side conditions for FSuP:

t -t

D < C<t;

t is nonfunctional;

the position of t is eligible in C'<t>;
t =~ t’ is strictly eligible in D;

if ¢’ is Boolean, then t' = T.

Al e

No side conditions for FEQRES. Side conditions for FEQFACT:

1. u =~ v is maximal in C;
2. u > .

Side conditions for FCLAUSIFY:

1. s &t is strictly eligible in C' V s =~ t;

OPTIMISTIC LAMBDA-SUPERPOSITION

23

2. the triple (s,t, D) has one of the following forms, where 7 is an arbitrary type and u, v

are arbitrary terms:

(uAv, T, uxT)
uVo, T, uxTVoxT)

Side conditions for FBoOoLHOIST and FLOOBHOIST:

1. w is of Boolean type;
2. u#Land u#T,;
3. the position of u is eligible in C}

4. the occurrence of u is not in a literal of the form u~ L oru~T.

Side condition for FFALSEELIM:
1. L =~ T is strictly eligible in C.
Side conditions for FARGCONG:

1. s is of type 7 — v;

2. u,w are ground terms of type 7 — v;
3. F(s) =~ F(s) is eligible in C.

Side conditions for FEXT:

1. the position of F (u) is eligible in C;
2. the type of u is 7 — v;

3. w is a ground term of type 7 — v;

4. u > w.

Side conditions for FDIFF:

1. 7 and v are ground types;
2. u, w, and s are ground terms.

uAv, T, v=T)
uVo, L, ux 1)

((uAv, L, ur~1lVovxl)
(
u—=v, T, ur LVoxT) (u—=v, L, urT)
(
(

(uVwo, L, vxl)
(u—=wv, L, vxl)
us’ v, L, uo)

ugg’ v, L, uxv)

—u, T, u~r 1) (-u, L, urT)

Definition 3.30. Since ¥ is bijective on ground terms by Lemma 3.26, we can convert
a term order > on higher-order terms into a relation >4 on ground first-order terms as

follows. For two ground first-order terms s and ¢, let s =g ¢ if F~1(s) = F71(¢).

Definition 3.31. Let ¢ € HInf™" for a term order = and a selection function hsel. Let

Ci[S1], - ., Cn[Sm] be its premises and Ciyyq1[Sm+1] its conclusion. Let (64, ...
be a tuple of grounding substitutions. We say that ¢ is rooted in FInf for (01, ...

and only if

— 5101, ..., Sm+10m+1 are true and

F(C161)

?(Cm+1‘9m+l>

bl 9m+1)
) 0m+1) if

is a valid FInf~7 inference ' such that the rule names of ¢ and ¢/ correspond up to the

prefixes F and FLUID.

24 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Definition 3.32 (Simple Inference Redundancy). Let N C (3. Let ¢ € HInf an inference
with premises C1[S1], ..., Cin[Swm] and conclusion Cy,11[Sm+1]. We call ¢ simply redundant
w.r.t. N, written « € HRedj(N), if for every tuple of substitutions (61, ..., 0p+1) for which
¢ is rooted in FiInf (Definition 3.31), there exists an index set I and for each i € I a ground
instance D;p; of a clause D;[T;] € N such that

L F({Dipi | i € I}) Fox F (Crt10m41);

2. v is a DIFF inference or for all i € I, D;p; < Cip0y; and

3. for all i € I, the 0,,41-instance of Cyy41[Sm+1] trusts the p;-instance of D;[T;].

3.8. Simplification Rules.

3.8.1. Analogues of First-Order Simplification Rules. Our notion of simple clause redun-
dancy (Definition 3.28) can justify most analogues of the simplification rules implemented
in Schulz’s E prover [27, Sections 2.3.1 and 2.3.2]. Deletion of duplicated literals, deletion of
resolved literals, and syntactic tautology deletion adhere to our redundancy criterion, even
when the involved clauses carry constraints. Semantic tautology deletion can be applied
as well, even on constrained clauses, but we must use the entailment relation =,y under
the encoding F. Positive and negative simplify-reflect can be applied as well, even with
constraints, as long as the substitution makes each constraint of the unit clause true or
translates it into a constraint already present on the other clause.

Our analogue of clause subsumption is the following. The subsumed clause can have
constraints, but the subsuming clause cannot.

C CoV DIS]
C

SUBSUMPTION

with the following side conditions:
1. D# Lor Co[S] OC;
2. C' does not contain a variable occurring both inside and outside of parameters.

Lemma 3.33. SUBSUMPTION can be justified by simple clause redundancy.

Proof. Let (Co V D)# € Gnd(Co V D[S]).

If D is nonempty, we apply condition 1 of Definition 3.28, using I = {*}, D, = C and
px = 0. The clause Cof is a proper subclause of (Co V D)6 and therefore F(Cof) Fon
F((Co Vv D)O) (condition 1a) and C'of < (Co V D)6 (condition 1b). For condition lc, let =
be a variable in C. By condition 2 of SUBSUMPTION, x occurs only inside parameters or
only outside parameters. If it occurs only inside, we apply condition (i) of Definition 3.27; if
it occurs only outside, we apply condition (ii) of Definition 3.27.

If D is 1, we apply condition 2 of Definition 3.28, using C' for D and o6 for p. Condi-
tion 2a clearly holds. Condition 2b holds by condition 1 of SUBSUMPTION. Condition 2¢
follows from condition 2 of SUBSUMPTION as above. []

For rewriting of positive and negative literals (demodulation) and equality subsumption,
we need to establish the following properties of orange subterms first:

Lemma 3.34. Let |g, be a Bn-normalizer. An orange subterm relation u< sy, w.r.t. Lan
can be disassembled into a sequence sy ...sy as follows: s1 is a green subterm of u; s = s;
and for each i < k, s; = \'s; and s;+1 is a green subterm of s;.

OPTIMISTIC LAMBDA-SUPERPOSITION 25

Proof. By induction on the size of u in n-long form.

If each orange subterm at a proper prefix of p is nonfunctional, then p is green, and we
are done with k =1 and s1 = s.

Otherwise, let p = q.r such that ¢ is the shortest prefix with nonempty r, where the
orange subterm s; at ¢ is functional. Then s; is a green subterm of u at ¢ because there does
not exist a shorter prefix with a functional orange subterm. Moreover, since s; is functional,
modulo 7-conversion, s; = A s for some s}. Since r is nonempty and s is the orange subterm
of s1 at r, there exists r’ at most as long as r such that s is the orange subterm of s} at
r'. Specifically, if 514, is a A-abstraction, we use 1. = r and otherwise 7' = r. By the
induction hypothesis, since s is an orange subterm of s}, there exist so,..., s with s = s
such that s; = X s, and s;41 is a green subterm of s for each i < k.]

Lemma 3.35. Let |g, be a fn-normalizer. Let u be a ground term, and let p be an orange
position of uw w.r.t. |g,. Let v, v be ground preterms such that u< vy, and uv"y, are terms.
Let k be a number large enough such that v{(0,...,k —1) — tx} and v'{(0,...,k —1) — &}
do not contain free De Bruijn indices for all tuples of terms t;,. Then

{F@{(0,...,k—1) 1} =0'{(0,...,k — 1) — 1 }) | each t; of the form diff(_, _)(_,)}
Fox F (u€vyp = uv’yp)
Proof. Let J be a |=¢x-interpretation with
T Eox F{(0,....k—1) =t} = V'{(0,...,k — 1) = #;})

for all tuples of terms ¢, where each ¢; is of the form diff(_, _)(_,) for arbitrary values of ‘.
By Lemma 3.34, we have u<v), = u<A wi<{A wa - - wp{v) - >>>.

STEP 1. Since v is a green subterm of w,<{v> and the terms ¢; have a form that does not
trigger B-reductions when substituting them for De Bruijn indices, v{(0,...,k — 1) — #x} is
a green subterm of w,<{v>{(0,...,k — 1) — &} and thus

T or Fwacoy{(0, .,k — 1) 5 B} % wn<o>{(0,. . k= 1) > G })

STEP 2. Using the property of extensionality w.r.t. diff of =,)-interpretations and using
the fact that we have shown the above for all ¢ of the form diff(_,)(_, _), we obtain

I Fox FI(Awp<wo){0 = ta,..., (k= 2) =t} & (A w00 = ta,. ., (k= 2) = ti})
Iterating steps 1 and 2 over wy,, ..., w;,u, we obtain
J ':o)\ T(u<<v>>p ~ U<<U/>>p)]

Our variant of rewriting of positive and negative literals (demodulation) is the following.
The rewritten clause can have constraints, but the rewriting clause cannot.

tx~t C¢vdS]

DEMOD

t=t Cu[S]
with the following side conditions:
1. to = v{(0,...,k — 1) — Zx} and t'c = 0'{(0,...,k — 1) — Ty} for some fresh variables
T and a substitution o.
2. C<w[S] = C<VH[ST;
3. for each tuple ¢y, where each ¢; is of the form diff(_, _)(_, _), we have C<vy = v{(0,...,k—
)=t~ 0 {(0,...,k—1) =ty };

26 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

4. t ~ t' does not contain a variable occurring both inside and outside of parameters.

Remark 3.36. In general, it is unclear how to compute condition 3 of DEMOD. For AKBO
and ALPO described in Section 3.5, however, the condition can easily be overapproximated
by C¢vd = v = v’, using the fact that the orders are also defined on preterms.

To prove that this is a valid overapproximation, it suffices to show the following: Let
u and s be preterms with u = s (resp. u 77 s). Let s’ be the result of replacing some De
Bruijn indices in s by terms of the form diff(_,)(_,-). Then u > s’ (resp. u 7 §).

ProoF FOR AKBO: By induction on the rule deriving u > s or u 7~ s. Since we assume in
Section 3.5 that wyp, > w(diff) and K (diff,i) = 1 for every i, we have W(s) > W(s). It is
easy to check that there is always a corresponding rule deriving u = s’ or u 77 §', in some
cases using the induction hypothesis.

PRrROOF FOR ALPO: By induction on the rule deriving v > s or v - s. Considering that we
assume in Section 3.5 that ws > diff, it is easy to check that there is always a corresponding
rule deriving u = s’ or u 77 &', in some cases using the induction hypothesis.

Since DEMOD makes use of orange subterms, it depends on the choice of Sn-normalizer.
Both |gplong and |gpshort yield a valid simplification rule:

Lemma 3.37. DEMOD can be justified by simple clause redundancy, regardless of the choice
of Bn-normalizer.

Proof. We apply condition 1 of Definition 3.28, using C'<vy[S] for C[S]. Let C<vd €
Gnd(C'¢wy[S]). Let % be a placeholder we use to extend a set of terms by an additional
element. Then we set

I = {tx, | each t; is a ground term of the form diff(_,)(_,-)} U {x}
Dy [Ty] =t~ 1
i, = o{Zk = 1 }0
D.[T.] = C<v"y[9]
px =10
By condition 1 of DEMOD,
Dy, pr, = v{(0,...,k = 1) = {10 = v'{(0,...,k — 1) — &}
:1)9{(0,...,]€—1) r—>fk} %U’H{(O,...,k—l) r—>t_k}

for each tuple ¢;, where each ¢; is of the form diff(_, _)(_,)

By Lemma 3.35, F ({Dip; | i € I\{*}}) Fox F (u8<v8y = uf<v'0y), where u is a side of
a literal in C'v) containing the orange subterm v. Thus F({D;p; | i € I}) FEox F(CKvHH)
(condition la of simple redundancy). Condition 2 and 3 of DEMOD imply D;p; < C'<vp8 for
all 7 € I (condition 1b of simple redundancy).

For condition 1c of simple redundancy, consider first a variable in Dy =t ~ t'. By
condition 4 of DEMOD, either condition (ii) or (if the variable occurs only inside parameters)
(i) of trust is fulfilled. Second, consider a variable x in C<v"y. Then we apply condition
(i) of trust. For every literal L € C'<v"y that contains x outside of parameters, we use the
corresponding literal K € C'<v) and the identity substitution for the o of condition (i). By
condition 2, L < K. L]

OPTIMISTIC LAMBDA-SUPERPOSITION 27

Our variant of equality subsumption is the following;:

tat OV osquy & s8]

- EQUALITYSUBSUMPTION

with the following side conditions:

1. to = v{(0,...,k — 1) — Ty} and t'c = V'{(0,...,k — 1) — Ty} for some fresh variables
Ty, and a substitution o;

2. for each tuple ¢, where each t; is of the form diff(_,)(_, _), we have C'<{v) > v{(0,...,k —
1) =t} =0 {(0,...,k—1) = {1 };

3. t ~ t’ does not contain a variable occurring both inside and outside of parameters.

To compute condition 2, we can exploit Remark 3.36.

Lemma 3.38. EQUALITYSUBSUMPTION can be justified by simple clause redundancy, re-
gardless of the choice of Bn-normalizer.

Proof. Analogous to Lemma 3.37. []

3.8.2. Additional Simplification Rules. The core inference rules ARGCONG, CLAUSIFY,
FaLseELiM, LooBHoisT, and BOOLHOIST described in Section 3.6 can under certain
conditions be applied as simplification rules.

Lemma 3.39. ARGCONG can be justified as a simplification rule by simple clause redundancy
when o is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. Let C be a ground instance of C[S]. Let 7 — v be the type of sf and s'6. We
apply condition 1 of Definition 3.28, using I = {(u,w) | u,w : 7 — v ground}, Dy, =
C'Vsxmsw, Ty =5, and pw = 0z — diff(7,v)(u,w)]. Condition la follows from
the extensionality property of |=,5. Condition 1b follows from (O5).

For condition 1c, first consider the fresh variable x. Since z is fresh and parameters
cannot contain free De Bruijn indices, x cannot occur in parameters in C’ V s x =~ s’ 2, and
thus condition (ii) of Definition 3.27 applies.

Now consider any other variable y in Dy, ,,). Such a variable must occur in C. We apply

condition (i) of Definition 3.27, using the identity substitution for o and—if y occurs in s or
§'—using (0O5). []

Lemma 3.40. CLAUSIFY can be justified as a simplification rule by simple clause redundancy
when o is the identity for all variables other than x and y. Moreover, it can even be applied
when its eligibility condition does not hold.

Proof. By condition 1 of Definition 3.28, using the fact that =, interprets Booleans. []

Lemma 3.41. FALSEELIM can be justified as a simplification rule by simple clause redun-
dancy when o s the identity. Moreover, it can even be applied when its eligibility condition
does not hold.

Proof. By condition 1 of Definition 3.28, using the fact that =,y interprets Booleans. []

Lemma 3.42. BooLHOIST and LOOBHOIST can be justified to be applied together as a
simplification rule by simple clause redundancy when o is the identity. Moreover, they can
even be applied when their eligibility condition does not hold.

28 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Proof. By condition 1 of Definition 3.28, using the fact that |=,) interprets Booleans. []

The following two rules normalize negative literals with T and L into positive literals.

C’vSséT[[S]] C’\/saéJ.[[S]]
NOTTRUE NOTFALSE
O/\/S%J_[[S]] C’\/s%T[S]]

Lemma 3.43. NOTTRUE and NOTFALSE can be justified as simplification rules by simple
clause redundancy.

Proof. By condition 1 of Definition 3.28, using the fact that |=,) interprets Booleans. []

The following simplification rule, UNIF, allows us to run a unification procedure to
remove the constraints of a clause.

Cls]
001 CO’n

UNIF

with the following side conditions:

1. {o1,...,0n} is a complete set of unifiers for S;
2. C[S] 2 Co; for all 4.

Lemma 3.44. UNIF can be justified by simple clause redundancy.

Proof. Let CO € Gnd(C[S]). By condition 1 of UNIF and Definition 3.13, there must exist
an index ¢ and a substitution p such that zo;p = 26 for all z in C[S]. We apply condition 2
of Definition 3.28. We use Co; for D and p for p. Condition 2a follows from the fact that
zo;p = 20 for all z in C[S]. Condition 2b follows from condition 2 of UNIF.

For condition 2c, we must show that the #-instance of C[S] trusts the p-instance of
Co;. We will use condition (i) of trust. Let L € Co;. Let K be a literal in C' such that
Ko; = L. We use g; for 0. Then we have 20 = zo;p = zop for all variables z in C. Moreover,
Ko = Ko; =L implies L < Ko. []

The following rule is inspired by one of Leo-II’s extensionality rules [9]:
C
——~
C'vszs 9]
C' Vv sdiff(r,v)(s,s') % s diff(1,v)(s,s") [9]

NEGEXT

Lemma 3.45. NEGEXT can be justified by simple clause redundancy.

Proof. Let C6 be a ground instance of C'[S]. We apply condition 1 of Definition 3.28, using
I ={x}, D, =C" Vv sdiff(r,v)(s,s") # s diff(1,v)(s,s"), Tx = S, and p, = 6. Condition la
follows from the argument congruence property of =,). Condition 1b follows from (O5).
For condition 1c, consider a variable y in C'. We apply condition (i) of Definition 3.27, using
the identity substitution for o and (O5).]

OPTIMISTIC LAMBDA-SUPERPOSITION 29

3.9. Examples. In this subsection, we illustrate the various rules of our calculus on concrete
examples. For better readability, we use nominal A notation.

Example 3.46 (Selection of Negated Predicates). This example demonstrates the value
of allowing selection of literals of the form ¢ ~ L. Although the original A-superposition
calculus was claimed to support selection of such literals, its completeness proof was flawed
in this respect [5,25].

Consider the following clause set:

Let us first explore what happens without literal selection. Due to the variables in (4), all of
the literals in (4) are incomparable w.r.t. any term order. So, since none of the literals is
selected, there are three possible SUP inferences: (1) into (4), (2) into (4), and (3) into (4).
After applying FALSEELIM to their conclusions, we obtain:

BG)gqy~LvVvrzxl
6)prreLVrza L
(Mpe~Llvayrl

For each of these clauses, we can again apply a SUP inference using (1), (2), or (3), in two
different ways each. After applying FALSEELIM to their conclusions, we obtain three more
clauses: pr =~ 1, qy ~ L and rz = L. From each of these clauses, we can then derive
the empty clause by another SUP and FALSEELIM inference. So, without literal selection,
depending on the prover’s heuristics, a prover might in the worst case need to perform
3+4+3-241=10 Sup inferences to derive the empty clause.

Now, let us consider the same initial clause set but we select exactly one literal whenever
possible. In (4), we can select one of the literals, say the first one. Then there is only one
possible SUP inference: (1) into (4), yielding (5) after applying FALSEELIM. In (5), we can
again select the first literal. Again, only one SUP inference is possible, yielding r z ~ L
after applying FALSEELIM. Another SUP and another FALSEELIM inference yield the empty
clause. Overall, there is a unique derivation of the empty clause, consisting of only three
SUP inferences.

Example 3.47 (Simplification of Functional Literals). Consider the following clauses, where
f and g are constants of type ¢ — .

(1)f~g
(2)f#¢g

A Sup inference from (1) into (2) is not possible because the terms are functional. Instead,
we can apply ARGCONG and NEGEXT to derive the following clauses:

(3) fr =gz (by ARGCONG from (1))
(4) f diff(f, g) % g diff(f,g) (by NEGEXT from (2))

30 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Both ARGCONG and NEGEXT are simplification rules, so we can delete (1) and (2) after
deriving (3) and (4). Now, a SUP inference from (3) into (4) and a EQRES inference yield
the empty clause.

In contrast, the original superposition calculus requires both the SuP inference from (1)
into (2) and also a derivation similar to the one above. Moreover, its redundancy criterion
does not allow us to delete (1) and (2). This amounts to doubling the number of clauses
and inferences—even more if f and g had more than one argument.

Example 3.48 (Extensionality Reasoning). Consider the following clauses:
(1) map (Au.sqrt (add w 1)) = % map (Au. sqrt (add 1 u)) =
(2) add uv ~ add v u

For better readability, we omit type arguments and use subscripts for the parameters of diff.
Using our calculus, we derive the following clauses:

(3) sqrt (add (dlﬂ:)\u sqrt (add u 1),2) 1) % z (dlﬂ:)\u sqrt (add u 1),2) v
map z x % map (Au.sqrt (add 1 u)) z (by EXT from (1))

(4) sqrt (add diﬂ:/\u. sqrt (add w 1), u. sqrt (add 1 u) 1) 76
sqrt (add 1 diffy,,. sqrt (add u 1),Au. sqrt (add 1 u))
(5) sqrt (add 1 dlﬂ:)\u sqrt (add u 1),A\u. sqrt (add 1 u)) ,\7"4
sqrt (add 1 d|ﬂ:)\u. sqrt (add w 1),Au. sqrt (add 1 u))
(6) L (by EQRES from (5))

(by EQRES from (3))

(by Sup from (2), (4))

While such a derivation is also possible in the original A-superposition calculus, the term
orders of the original calculus were not able to compare the literals of the extensionality
axiom

y diff, . % 2 diff, . Vy ~ 2z

As a result, the extensionality axiom leads to an explosion of inferences. Our calculus avoids
this problem by ensuring that the positive literal of the extensionality axiom is maximal, via
the ordering property (O5). By replacing the extensionality axiom with the EXT rule, we
avoid in addition SUP inferences into functional terms, and it strengthens our redundancy
criterion.

Example 3.49 (Delaying Unification Using Constraints). Consider the following clause set:
(1) map (Au. y (sw)) a % map (Au. z (s (yu))) a VIt (y zero) (s (s (szero))) =~ T
2)trx~1
We assume that the first literal of (1) is selected. Using a CSU"P* function that implements
Huet’s preunification procedure, we can derive the following clauses:
(3) It (y zero) (s (s (szero))) = T [Au.y (su) = u. 2z (s (yu))] (by EQRES from (1))
(4) L~T (by Sup from (3),(2))
(5) L (by CLAUSIFY from (4))

If our calculus did not support constraints, we would have to solve the unification problem

in (3) first, which yields an infinite number of solutions among which the simplest ones are
dead ends.

OPTIMISTIC LAMBDA-SUPERPOSITION 31

Example 3.50 (Universal Quantification). Consider the following clause set:
(1) A\z.pz) = (A\z. T)
(2) par Ll
Here, clause (1) encodes the universal quantification Vz. p xz. We can derive a contradiction
as follows:
(3) px~T (by ARGCONG from (1))
(4) T~ L1 (by Sup from (2), (3))
(5) L (by FALSEELIM from (4))

Since the ARGCONG inference creating clause (3) can be used as a simplification rule by
Lemma 3.39, clause (1) can be deleted when creating clause (3). So we do not need to apply
any EXT inferences into clause (1). Except for inferences into (1) and except for a DIFF
inference, the inferences required in the derivation above are the only ones possible. In this
sense, the encoding of the universal quantifier using A-abstractions has no overhead.

Example 3.51 (Existential Quantification). Negated universal quantification or existential
quantification can be dealt with similarly. Consider the following clause set:

(1) (A\z.pz) % (A\z.T)
(2)pzrT
We can derive a contradiction as follows:
(3) pdiff(t,0)(A\z. px,A\z.T) % T (by NEGEXT from (1))
(4) pdlff(L o)Ax.pz, \x.T)~ L (by NOTTRUE from (3))
(5) T~ L (by Sup from (2), (4))
(6) L (by FALSEELIM from (5))

Again, we can delete (1) when creating (3), preventing any EXT inferences from (1). Moreover,
we can delete (3) when creating (4). As a result, encoding existential quantification using
A-abstraction does not have overhead either.

Example 3.52. This example illustrates why condition (ii) of our definition of trust
(Definition 3.27) must require the variable not to occur in parameters. Consider the
following clause set:

(1) b a
(2) Az (mpzy) AlpzyVysa)) # (Az. 1)
(3) (A\z. (mpxb)A(pzbVbga))# (Az. 1)

Note that the clauses (Az. ...) % (Ax. L) can be read as Jz.... and that (3) is an instance
of (2). Clauses (1) and (3) alone are unsatisfiable because (1) ensures that the right side of
the disjunction px bV b % a in (3) is false, and since (mpx b) A (pz b) is clearly false, clause
(3) is false.

For the following derivation, we assume b > a. Applying NEGEXT to (2) and (3) followed
by NOTFALSE yields

(4) -p diffy,. (~pz y)A(p x yVyza), z. L Y A pdiffy, (~pz y)A(p x yVyza), x. L Y Vy # a~rT
(5) —p diff .. (=p z b)A(p z bVbsa),Az. L b A pdiffy,. (mp z b)A(p z bVbgéa),\x. L bVb ?5 axT

32 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

For better readability, we omit the type arguments and write the parameters of diff as
subscripts. Applying CLAUSIFY several times yields

(6) pdiffas. (mpazy)A(pa yvypa) e LY = L
(7) pdiffrs. (vpzy)A(po yvypa) A LY T Vy Fa
(8) pdiffas. (—pa b)A(pz bvbga) e L DA L
(9) pdiffxs. (—px b)A(pa bvbgga) ae. LD T Vb a

By positive simplify-reflect on (9), followed by DEMOD from (1) into the resulting clause,
we obtain the clause

(10) pdiffas. (=pab)A(p = bvbga)re. L3R T

In this derivation, (2), (3), (4), (5), and (9) can be deleted because NEGEXT, NOTFALSE,
CLAUSIFY, DEMOD, and positive simplify-reflect can be applied as simplification rules.

To illustrate why condition (ii) does not apply to variables that occur in parameters,
we also remove (8), which is against the redundancy criterion but would be justified by
SUBSUMPTION of (8) by (6) if condition (ii) ignored parameters. The following clauses
remain:

1)bra

7) p d”cF)\x (mpxy)A(p x yVyska), z. L Yy~ TV Yy ’7'\é a

(

(6) p d”cF)\a: (mpxy)A(p x yVyska), z. L Yy~ 1
(

(10) p diffxz. (=p « b)A(p z bVbgga) Ae. L3 R T

Assuming that the negative literal in (7) is selected and that b > a, no core inference rule
other than DIFF applies. Due to the explosive nature of DIFF, it is difficult to predict whether
Di1rr inferences lead anywhere, but we conjecture that this is indeed a counterexample to a
redundancy criterion that ignores parameters.

An alternative approach with a stronger redundancy criterion that does not need to
treat parameters specially may be to enforce superposition inferences into variables that have
other occurrences inside parameters. In the example above, this would entail a superposition
inference from (1) into the variable y in the second literal of (7), which would indeed lead to
a refutation.

4. SOUNDNESS

To prove our calculus sound, we need a substitution lemma for terms and clauses, which our
logic fulfills:

Lemma 4.1 (Substitution Lemma). Let 0 be a substitution, and let t be a term of type T.
For any proper interpretation J = (Jyy,d, L) and any valuation &,

615 = [£15

where the modified valuation &' is defined by & (o) = [[040]]53 for type variables « and
Ele(z) = [[:13«9]]5 for term variables x.

OPTIMISTIC LAMBDA-SUPERPOSITION 33

Proof. By induction on the size of the term t.
CASE t = z(T):
[£61; = [0];
= ¢ (x) (by the definition of interpretation)
= [z]; (since z is mapped to [[x@]]g)

CASE t = f(7)(u):
[t615 = [f(70)(@d)];

= 3 (F, [70]57.[a0]5) (by definition)

=J(f,[7]]53, [[ﬂ]]gl) (by induction hypothesis)
= [[f<7_'/>(ﬂ)]]§/ (by definition)

=[5

CASEt=suv:
1615 = [0 v]5
= [[se]]lgi ([[ve]/]g) (by definition)
=|s v vy induction hypothesis
5 ([v]5) (byind hypoth
=[s UJ]? (by definition)
= [
CASE t = \(1) w:
[16]5(e) = [M79) u6li ()
= [ub{0 — x}]]g&y’&e[x'_)a}) (since J is proper; for some fresh variable x)
= [uf0 v)6 selD
=u{0— =z v induction hypothesis
:(]é-tyvgte[m’_)a]) b d h h
= [A(7) u]]gl(a) (since J is proper)
= [1]5 (a)
[

Lemma 4.2 (Substitution Lemma for Clauses). Let 6 be a substitution, and let C be a
clause. For any proper interpretation J = (Jyy,d, L) and any valuation &, CO is true w.r.t. J
and & if and only if C is true w.r.t. J and &, where the modified valuation &' is defined by
() = [[a@]]gz for type variables o and & () = [[acﬁ]]§ for term variables x.

Proof. By definition of the semantics of clauses, C8 is true w.r.t. J and £ if and only if one
of its literals is true w.r.t. J and €. By definition of the semantics of literals, a positive literal
s0 =~ tO (resp. negative literal sf % t0) of C is true w.r.t. J and ¢ if and only if [[30]]5 and
[[t@]]g are equal (resp. different). By Lemma 4.1, [[59]]§ and [[t@]]g are equal (resp. different) if
and only if [[s]]g and [[t]]g are equal (resp. different)—i.e., if and only if a literal s &~ ¢ (resp.
s t)in C is true w.r.t. J and &'. This holds if and only if C is true w.r.t. J and ¢'. []

34 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Theorem 4.3. All core inference rules are sound w.r.t. 2 (Definition 2.1). All core inference
rules except for EXT, FLUIDEXT, and DIFF are also sound w.r.t. |=. This holds even when
ignoring order, selection, and eligibility conditions.

Proof. We fix an inference and an interpretation J that is a model of the premises. For EXT,
FLUIDEXT, and DIFF inferences, we assume that J is diff-aware. We need to show that it
is also a model of the conclusion. By Lemma 4.2, J is a model of the o-instances of the
premises as well, where o is the substitution used for the inference. From the semantics of
our logic, it is easy to see that congruence holds at green positions and at the left subterm
of an application. To show that J is a model of the conclusion, it suffices to show that the
conclusion is true under J, £ for all valuations &.

For most rules, it suffices to make distinctions on the truth under J, ¢ of the literals
of the o-instances of the premises, to consider the conditions that ¢ is a unifier where
applicable, and to apply congruence. For BooLHoI1sT, LOOBHOIST, FALSEELIM, CLAUSIFY,
FruibBoovLHoisT, FLUIDLOOBHOIST, we also use the fact that J interprets logical symbols
correctly. For EXT, FLUIDEXT, and DIFF, we also use the assumption that J is diff-aware. []

5. REFUTATIONAL COMPLETENESS

Superposition is a saturation-based calculus. Provers that implement it start from an initial
clause set Ny and repeatedly add new clauses by performing inferences or remove clauses by
determining them to be redundant. In the limit, this process results in a (possibly infinite)
set Ny, of persistent clauses. Assume that inferences are performed in a fair fashion; i.e., no
nonredundant inference is postponed forever. Then the set N, is saturated, meaning that
all inferences are redundant (for example because their conclusion is in the set). Refutational
completeness is the property that if N, does not contain the empty clause, Ng has a model.
Since refutational completeness is the only kind of completeness that interests us in this
article, we will also refer to it as “completeness.”

Due the role of constraints and parameters in our calculus, our completeness result,
stated in Corollary 5.96, makes two additional assumptions: It assumes that the clauses in
Ny have no constraints and do not contain constants with parameters. And, instead of the
usual assumption that N, does not contain the empty clause, we assume that N, does not
contain an empty clause with satisfiable constraints.

5.1. Proof Outline. The idea of superposition completeness proofs in general is the
following: We assume that N, does not contain the empty clause. We construct a term
rewrite system derived from the ground instances of No. We view this system as an
interpretation J and show that it is a model of the ground instances and thus of N, itself.
Since only redundant clauses are removed during saturation, J must also be a model of Njp.

Completeness proofs of constrained superposition calculi, including our the completeness
proof of our calculus, must proceed differently. The constraints prevent us from showing
J to be a model of all ground instances of N,. Instead, we restrict ourselves to proving
that J is a model of the variable-irreducible ground instances of N,,. Roughly speaking, a
variable-irreducible ground instance is one where the terms used to instantiate variables are
irreducible w.r.t. the constructed term rewrite system. The notion of redundancy must be
based on the notion of variable-irreducible ground instances as well, so that if J is a model of
the variable-irreducible ground instances of N, it is also a model of the variable-irreducible

OPTIMISTIC LAMBDA-SUPERPOSITION 35

. H x (diff (o, @) (g{a), h{a)) z = ¢
higher-ord) :
constll;gai(ralregrclglses [z (g{a) y) = z (gle) ala), 2z = Aa)k(a)0y]
G G
G x (diff (¢, 0)(g{a), h{a)))z ~ ¢
higher-order closures Aar o, (), y—al), z— X)) k{t)0a)}
P P
partly slilgstituted f(e) (diff (¢, 0)(g(e), h (1)) (A{t) k() 0 21.2) = ¢
higher-order closures Ay a), ma2eale

I |7

IPG fFLt ~
indexed partly substituted B (diff G ngy) (MY k(00 21.2) ~
higher-order closures Ay = a), 2120 a(y)}

L7 |7

PF Ll ierbsl ~
partly substituted Fdiff G yniy fUmk@on(ziz)) m e

ground first-order closures Ay ap, 22— apt

J T l T

F L syl L ~
ground first-order clauses fi (dlff(g7h)70’ funskwoo(ap)) ~ c

Figure 1: Overview of the levels

ground instances of Ny. Assuming that the initial clauses Ny do not have constraints, J is
then a model of all ground instances of Ny because every ground instance has a corresponding
variable-irreducible instance with the same truth value in J. It follows that J is a model of
No.

To separate concerns, our proof is structured as a sequence of six levels, most of which
have their own logic, calculus, redundancy criterion, and completeness property. The levels
are called H, G, PG, IPG, PF, and F. They are connected by functions encoding clauses
from one level to the next.

The level H is the level of higher-order constrained clauses, using the logic described in
Section 2 and the calculus described in Section 3. Our ultimate goal is to prove completeness
on this level.

The level G is the level of higher-order closures, where a closure C - § is a pair consisting
of a clause C' and a grounding substitution §. The function G maps each clause from level
H to a corresponding set of closures on level G using all possible grounding substitutions.

The level PG is the level of partly substituted higher-order closures. It is the fragment of
G that contains no type variables and no functional variables. The map P encodes closures
from G into level PG by applying a carefully crafted substitution to functional variables.

The level IPG is the level of indezed partly substituted closures. It modifies the signature
of the previous levels by replacing each symbol with parameters f : Na,,. 7, = 7 by a

36 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

collection of symbols fg;" : 7 for each tuple of types v,, and each tuple of ground terms
Uy, : Tn. The map 7 encodes closures from PG into IPG by moving type arguments into the
superscript indices v,,, parameters into the subscript indices .

The level PF is the level of partly substituted ground first-order closures. Its logic is
the one described in Section 3.7 except with variables and closures. We extend the encoding
F (Definition 3.23) with variables, yielding an encoding from IPG into PF.

The level F is the level of first-order clauses. It uses the same logic as PF but uses
ground clauses instead of closures. The map 7" connects the two by mapping a closure C' - 6
to the clause C6.

Figure 1 gives an overview of the hierarchy of levels and an example of a clause instance
across the levels.

5.2. Logics and Encodings. In our completeness proof, we use two higher-order signatures
and one first-order signature.

Let ¥y be the higher-order signature used by the calculus described in Section 3. It is
required to contain a symbol diff : Ila, 8. (« = B, a0 —) = «

Let 31 be the signature obtained from Xy in the following way: We replace each
constant with parameters f : MNa,,. 7, = 7 in X with a family of constants f— : 7, indexed
by all possible ground types 0, and ground terms t,, € Tground(Xu) of type Tn{am — U}
Constants without parameters (even those with type arguments) are left as they are.

In some contexts, it is more convenient to use terms from Zgounda(X1) instead of
Teround (1) in the subscripts ¢; of the constants ft?n ™. We follow this convention:

Convention 5.1. In the subscripts ¢; of constants fgn’" € X1, we identify each term of the
form f(Um)(tn) € Toround (X1) with the term fg” € ZTground (X1), whenever n > 0.

Similarly, the first-order signatures #(X1) and ¥ (Xp) as defined in Section 3.7 are
almost identical, the only difference being that the subscripts ¢ of the symbols fun; € F(Xy)
may contain symbols with parameters, whereas the subscripts ¢ of the symbols fun, € F (%)
may not. To repair this mismatch, we adopt the following convention using the obvious
correspondence between the symbols in ¥ (Xg) and F(Xr):

Convention 5.2. In the subscripts of constants fun; in 7 (¥Xy) and #(X1), we identify each
term of the form (0,)(tn) € Tground (Xn) with the term fim € Tground (X1), whenever n > 0.
Using this identification, we can consider the first-order signatures ¥ (¥Xy) and F(X1) to be
identical.

Our completeness proof uses two sets of variables. Let Vi be the set of variables used
by the calculus described in Section 3. Based on Vg, we define the variables Vpg of the PG
level as

Vrg = Vu U{yp(7) | ¥y € Vi, p a list of natural numbers, 7 a nonfunctional type}

The table below summarizes our completeness proof’s six levels, each with a set of terms
and a set of clauses. We write Tx for the set of terms and Cx for the set of clauses of a given
level X:

OPTIMISTIC LAMBDA-SUPERPOSITION 37

Level Terms Clauses
F ground first-order terms over ¥ (3r) clauses over Tp
PF first-order terms over ¥ (X1) and Vpg that do closures over Zpp
not contain variables whose type is of the form
T—0

IPG {t € T(X1,Vpg) | t contains neither type vari- closures over Tipg
ables nor functional variables}
PG {t € T(Xu,Vpg) | t contains neither type vari- closures over Tpg
ables nor functional variables}
G T(3q, Vi) closures over 7g
H T(3q, Vi) constrained clauses over Ty

5.2.1. First-Order Encodings. The transformation 7" from Cpr to (r is simply defined as
T(C-0) =C0. We also define a bijective encoding from Tipg into Zpr and from Gpg into
Crr- It is very similar to the encoding F : Tground (X1) — Zr defined in Definition 3.23, but
also encodes variables and does not encode parameters. We reuse the name F for this new
encoding. Potential for confusion is minimal because the two encodings coincide on the
values that are in the domain of both.

Definition 5.3 (First-Order Encoding). We define ¥ : Tipg — Zpy recursively as follows:
If ¢ is functional, then let ¢’ be the expression obtained by replacing each outermost proper
yellow subterm in ¢ by the placeholder symbol 00, and let F(t) = funy (¥ (5,)), where 5,
are the replaced subterms in order of occurrence. If ¢ is a variable x, we define ¥ (t) = z.
Otherwise, t is of the form f(7) ¢, and we define F(t) =7 (F(t1),..., F (tm))-

Applied to a closure C - 0 € (Gpg, the function ¥ is defined by F(C - 0) = F(C) - F(0),
where F maps each side of each literal and each term in a substitution individually.

Lemma 5.4. The map F is a bijection between Tipg and Tpr and between Gpg and Cpr.

Proof. Injectivity of & can be shown by structural induction. For surjectivity, let ¢t € Tpp.
We must show that there exists some s € Zipg such that F(s) = ¢t. We proceed by induction
on t.

If ¢ is of the form funy(%,), we use the induction hypothesis to derive the existence
of some 3, € Tpg such that F(5,) = t,. Let s be the term resulting from replacing the
placeholder symbols O in ¢’ by 5, in order of occurrence. Then ¥ (s) = t.

If t is a variable x, by definition of Tpy, t’s type is not of the form 7 — v. So, we can
set s =x € Trpg. Then F(s) =1t.

If t = f7(t,), where 7 is not a fun symbol, by the induction hypothesis there exist 5,
such that F(s,) = ¢, and set s = f(7) 5,,. Then ¥ (s) =t.

It follows that ¥ is also a bijection between (ipg and Cpr.]

Lemma 5.5. For all terms t € Trpa, all clauses over Tipa, and all grounding substitutions

0, we have F(t)F(0) = F(t0) and F(C)F(0) = F(C0).

Proof. Since ¥ maps each side of each literal individually, it suffices to show that F(¢)F (6) =
F(t0) for all t € Trpg. We proceed by structural induction on ¢.

If ¢ is a variable, the claim is trivial.

If ¢ is nonfunctional and headed by a symbol, the claim follows from the induction
hypothesis.

38 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Finally, we consider the case where ¢ is functional. Let ¢’ be the expression obtained by
replacing each outermost proper yellow subterm in ¢ by the placeholder symbol [, and let
Spn, be the replaced subterms in order of occurrence. Since all variables in ¢ are nonfunctional,
they must be located in a proper yellow subterm of ¢, and thus replacing the outermost
proper yellow subterm in ¢6 by the placeholder symbol OJ will result in ¢’ as well. So, using
the induction hypothesis, F (t)F (0) = funy (F (5,) F (0)) = funy (F (5,0)) = F(t6). []

Lemma 5.6. A term s € Tipg is a yellow subterm of t € Tipg if and only if F(s) is a
subterm of F(t).

Proof. By induction using the definition of . []

Lemma 5.7. A term s € Tipg is a green subterm of t € Tipg if and only if F(s) is a green
subterm (as defined in Section 3.7) of F(t).

Proof. By induction using the definition of . []

5.2.2. Indexing of Parameters.

Definition 5.8 (Indexing of Parameters). The transformation 7 translates from 7Zpg to
Tipc by encoding any occurrence of a constant with parameters f(0)(ua) as f2,, where 6
denotes the substitution of the corresponding closure. Formally:

Jo(x) = x
Jo(At) = A Jp(t)
Jo(f(0) 5) = £(0) Jp(5)
90(F(0) (1) 5) = £5, 99(3) if k > 0
To(m5) =m 5(5)
We extend 9y to clauses by mapping each side of each literal individually. If ¢ is a ground
term, the given substitution is irrelevant, so we omit the subscript and simply write 7(t).

We extend J to grounding substitutions by defining 7(6) as x — J(xz6). The transformation
J w.r.t. a closure C' - 0 is defined as 7(C - 0) = J(C) - 7(0).

Lemma 5.9. For allt € Tpg, all clauses C over Tpg, and all grounding substitutions 6, we

have J(t0) = 95(t) () and J(CO) = Jo(C)I(0).

Proof. Since J maps each side of each literal individually, it suffices to show that 7(t0) =
Jo(t)9(0). We prove this by induction on the structure of ¢. If ¢ is a variable, the claim is
trivial. For all other cases, the claim follows from the definition of J and the induction
hypothesis. L]

Lemma 5.10. If %(t)7(0) = % (t')7(6), then t0 = ¢'6.

Proof. This becomes clear when viewing J as composed of two operations: First, we apply
the substitution to all variables in parameters. Second, we move type arguments and
parameters into indices. Both parts clearly fulfill this lemma’s statement. []

Lemma 5.11. Let t € Tgound(Xu), and let C be a clause over Tgound(Xu). Then F(I(t)) =
F(t) and F(J(C)) = F(C).

OPTIMISTIC LAMBDA-SUPERPOSITION 39

Proof. For t, the claim follows directly from the definitions of J (Definition 5.8) and F
(Definitions 3.23 and 5.3), relying on the identification of fun; and fun, (Convention 5.2).
For C, the claim holds because J and # map each side of each literal individually. []

5.2.3. Partial Substitution. Let 6 be a grounding substitution from Vi to Zground(XH)-
We define a substitution p(#), mapping from Vi to 7 (X, Vpg), and a substitution q(6),
mapping from Vpa to Zground(XH), as follows. For each type variable a, let ap(f) = af.
For each variable y € Vy, let yp(6) be the term resulting from replacing each nonfunctional
yellow subterm at a yellow position p in yf by y, € Vpg. We call these variables y, the
variables introduced by p(#). If a nonfunctional yellow subterm is contained inside another
nonfunctional yellow subterm, the outermost nonfunctional yellow subterm is replaced by a
variable. The substitution q(¢) is defined as y,q(6) = y#|, for all variables y,, introduced by
p(0), and for all other variables y € Vpg, we set yq(f) to be some arbitrary ground term
that is independent of 6.
Finally, we define

P:(Cc— Cpg, C-0—Cp(0)-q(0)

For example, if yf = A f (0 (ga)), then yp(#) = Af (0y1.1.1) and y1.1.19(0) = g a.

Technically, this definition of p, q, and 2 depends on the choice of a Sn-normalizer |g,
because it relies on yellow positions. However, this choice affects the resulting terms and
clauses only up to renaming of variables, and our proofs work for any choice of |g, as long
as we use the same fixed |g, for p, q, and 2.

Lemma 5.12. Let 6 be a grounding substitution. Then p(6)q(6) = 6.

Proof. For type variables a, we have ap(6)q(0) = af by definition of p. We must show that
yp(0)q(0) = yb for all variables y € Vy. By definition of p, yp(#) is obtained from y6 by
replacing each nonfunctional yellow subterm at a yellow position p with y,. By definition of
q, we have y,q(8) = y0|, for all such positions p. Therefore, when we apply q(#) to yp(6),
we replace each y, with the original subterm y#)|,, effectively reconstructing 6. []

Lemma 5.13. Let 0 be a substitution from Vi to Tground(Xu) and p be a substitution from
Ve to Tground(Em). Then p(p(0)p) = p(6).

Proof. Let y € Vy. By definition of p, yp(#) is obtained from yf by replacing each non-
functional yellow subterm at a yellow position p with y,. Now, consider yp(#)p. Since p is
grounding, it will replace each y, with a ground term. To obtain yp(p(#)p), we take yp(8)p
and again replace each nonfunctional yellow subterm at a yellow position p with y,. These
positions and the resulting structure will be identical to those in yp(#) because the ground
terms introduced by p do not affect the overall structure of yellow positions. Therefore,
yp(p(0)p) = yp(@) for each variable y € Vy.

For type variables «, we have ap(0) = af = ap(p(f)p). Thus, we can conclude that

p(p(0)p) = p(0). O

Lemma 5.14. Let 0 be a substitution from Vi to Tground(Xn). Let p be a substitution from
Vpa to Tground (X1) such that yp = yq(8) for all y not introduced by p(8). Then q(p(0)p) = p.

Proof. Let y, be a variable introduced by p(p(6)p). By definition of q, we have y,q(p(#)p) =
yp(0)plp- Moreover, since yp(0)[, = yp, we have yp(0)pl, = ypp. So y,a(p(0)p) = ypp-

40 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Let y be a variable not introduced by p(p(€)p). It remains to show that yq(p(0)p) =
yp. By Lemma 5.13, the variables introduced by p(f) are the same as the variables
introduced by p(p(0)p). So y is not introduced by p(6) either. So, by definition of q, we have
yq(p(0)p) = yq(0), and with the assumption of this lemma that yp = yq(f), we conclude

that yq(p(0)p) = yp. O]

Lemma 5.15. Let 0 be a grounding substitution. For each variable y € Vi, yp(0) is the
most general term t (unique up to renaming of variables) with the following properties:

1. there exists a substitution p such that tp = yb;
2. t contains no type variables and no functional variables.

Proof. Let y € V. By Lemma 5.12, yp(0) satisfies property 1, and by definition of p, it
satisfies property 2.

To show that yp(6) is the most general such term, let s be any term satisfying properties
1 and 2, and let o be a substitution such that so = yf. We must show there exists a
substitution 7 such that yp(0)7 = s.

Since s contains no type variables and no functional variables, it is easy to see from the
definition of orange subterms that for any orange position p of so, either p is also an orange
position of s or there exists a proper prefix g of p such that ¢ is an orange position of s and
s|q is a nonfunctional variable. If there exists such a prefix ¢, then ¢ must be a nonfunctional
yellow position of so since o cannot introduce free De Bruijn indices at that position, and
thus p cannot be an outermost nonfunctional yellow subterm of so. From these observations,
we conclude that any outermost nonfunctional yellow position p of so must be an orange
position of s. In fact, since substituting nonfunctional variables cannot eliminate De Bruijn
indices, any outermost nonfunctional yellow position of so must be a yellow position of s.

Let m map each variable y,, introduced by p(é) to the corresponding term in s at position
p. This term exists because p is, by definition of p(#), an outermost nonfunctional yellow
position of y# = so and thus, by the above, a yellow position of s. Then yp(f)m = s by
construction, showing that yp(6) is indeed most general.]

Lemma 5.16. Let o be a substitution, and let (be a grounding substitution. Then there
exists a substitution w such that op(¢) = p(o{)w and q(c¢) = 7q().

Proof. Let z € Vyg. By Lemma 5.12, xop(¢)q(¢) = xo(. Moreover, xop({) contains only
nonfunctional variables. By Lemma 5.15, since xp(o() is the most general term with these
properties, there must exist a substitution 7 such that xop(¢) = zp(o()m. Since the variables
in z1p(0¢) and xop(o() are disjoint for x1 # x2, we can construct a single substitution 7
that satisfies op(¢) = p(o({)m, proving the first part of the lemma.

For this construction of 7, only the values of 7 for variables introduced by p(c() are
relevant. Thus, we can define ym = yq(o() for all other variables y. Then yq(c¢) = ymq(¢)
for all variables y not introduced by p(o().

Finally, let y, be a variable introduced by p(c(¢). By Lemma 5.12 and the above,

o¢ = op(¢)q(¢) = p(c¢)mq(¢). By Lemma 5.14, y,q(c¢) = ypmq(¢) for all variables y,
introduced by p(c(), completing the proof of the second part of the lemma. []

The redundancy notions of the H level use the map ¥, defined in Section 3.7. It is
closely related to the maps defined above.

Lemma 5.17. For all clauses C' and grounding substitutions 0,

F(CO) =T(F(I(2(C-0))))

OPTIMISTIC LAMBDA-SUPERPOSITION 41

Proof. All of the maps T, ¥, 7, and P map each literal and each side of a literal individually.
So we can focus on one side s of some literal in C, and we must show that

F(s0) = F (a0 (sp(0))) F (I(a(0))) (%)
By Lemma 5.11,
F(t)=F0UQ1)
for all ground terms ¢t € Tyround(Xn). By Lemma 5.9,
Jp()I(p) = I(tp)
for all ¢t € Ipg and grounding substitutions p. Also, by Lemma 5.5,

F)F(p) = F(tp)

for all ¢t € Tipc and grounding substitutions p. From the last three equations, we obtain that

F(tp) = FIp(t)F(I(p))

for all t € 7pg and grounding substitutions p.
Using the term s and the substitution 6 introduced at the beginning of this proof, take
t to be sp(f) and p to be q(#). We then have

F (sp(0)a(0)) = T (Jy(0)(sp(0))) F (I(a(0)))
By Lemma 5.12, this implies (x). []

5.2.4. Grounding. The terms of level H are 7 (Xy). Its clauses (3 are constrained clauses
over these terms. We define the function G : Cg — Cg by

G(C[S]) ={C - 0| 6 is grounding and S0 is true}

for each constrained clause C[S] € Cy.

5.3. Calculi. In this section, we define the calculi PFInf, IPGInf, and PGInf, for the
respective levels PF, IPG, and PG. Each of these calculi is parameterized by a relation >
on ground terms, ground clauses, and closures and by a selection function sel. Based on
these parameters, we define the notion of eligibility. The specific requirements on > depend
on the calculus and are given in the corresponding subsection below. For each of the levels,
we define selection functions and the notion of eligibility as follows:

Definition 5.18 (Selection Function). For each level X € {PF,IPG,PG}, we define a
selection function sel to be a function mapping each closure C - 6§ € Cx to a subset of C’s
literals. We call those literals selected. Only negative literals and literals of the form ¢ ~ L
may be selected.

Definition 5.19 (Eligibility in Closures). Let X € {PF,IPG,PG}. Let C -0 € Cx. Given
a relation > and a selection function, a literal L € C' is (strictly) eligible in C - 0 if it is
selected in C - 0 or there are no selected literals in C - 6 and L@ is (strictly) maximal in C#.
A position L.s.p of a closure C' - @ is eligible if the literal L is of the form s &~ ¢t with s6 > t0
and L is either negative and eligible or positive and strictly eligible.

For inferences, we follow the same conventions as in Definition 3.22, but our inference
rules operate on closures instead of constrained clauses.

42 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

5.3.1. First-Order Levels. The calculus PFInf™*¢ is parameterized by a relation > and
a selection function sel. We require that > is an admissible term order for PFInf in the
following sense:

Definition 5.20. Let > be a relation on ground terms, ground clauses, and closures. Such
a relation - is an admissible term order for PFInf if it fulfills the following properties:

O1)pp the relation > on ground terms is a well-founded total order;

O2)pr ground compatibility with contexts: if s’ > s, then §'[t] > s[t];

03)pr ground subterm property: t[s] = s for ground terms s and t;

O4)pr u = L > T for all ground terms u ¢ {T,L};

O5)pr F(u) = F(u diff;”f) for all s,t,u: 7 — v € Tground (X1);

O6)pr the relation > on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];

(O7)pr for closures C -0 and D - p, we have C -0 = D - p if and only if CO - Dp.

We use the notion of green subterms in first-order terms introduced in Section 3.7. We
define x(p U #) as zp if x occurs in the left premise and as z6 otherwise.

/—’L /_L
(D'vitxt)p Cluy-0 (C'"Vugu)-0
(D’vCKﬂ>y(pU€) PFSup o g PFEQRES
c
(C'Vu' ~vVumv)f (C'Vs~t) 0
PFEQFAcCT PFCLAUSIFY
(C'"Vosd Vuxd)- 0 (C'"vD) 6
Cluy- 0 Clu>- 6
PFBoovLHoOIST PFLoOOBHOIST
(C<L>VurT) 0 (C<T>Vurl)-0
c
—_—N—
(C'Vs~t)-0
PFFALSEELIM
-0
c
(©'V F(s) ~ F(5)) 0
(: (s) ())_ PFARGCONG
C'V F(sdiff}) ~ F (s diff]) - 0
C<F(u)>-0
<Fup PFEXT

C<F(w)>V F(u diff;’;jwp) % F(w diff;’ev,wp) - p
PFDIFF

F(u diff;gwe) % F(w diff;’ev,we) VF(us)~ F(ws)- 0
Side conditions for PFSuP:

1. tp = ub;
2. u is not a variable;
3. u is nonfunctional;

OPTIMISTIC LAMBDA-SUPERPOSITION

tp = t'p;

Dp < Clulb;

the position of u is eligible in C - 8;
t ~ t' is strictly eligible in D - p;

. if t'p is Boolean, then t'p = T.
Side conditions for PFEQRES:

1. ub = u/0;

2. u ' is eligible in C - 6.

Side conditions for PFEQFACT:

1. uf = u'0;

2. u~wv-0is maximal in C - 6;

3. there are no selected literals in C' - 6,
4. uf = vb,

Side conditions for PFCLAUSIFY:

1. s~ t is strictly eligible in (C" V s = t) - 6;

0 N> o

43

2. The triple (s, tf, D) has one of the following forms, where 7 is an arbitrary type and u, v

are arbitrary terms:
(uAv, T, urT)
uVo, T, uxTVoxT)

Side conditions for PFBooLHo1sTand PFLOOBHOIST:

1. w is of Boolean type
2. u is not a variable and is neither T nor L;
3. the position of u is eligible in C - 0;

4. the occurrence of u is not in a literal L with L8 = (uf =~ L) or LO = (uf

Side conditions for PFFALSEELIM:
L. (set)d=L=~=T;

2. s & t is strictly eligible in C - 6.
Side conditions for PFARGCONG:

1. sis of type 7 — v;

2. u,w are ground terms of type 7 — v;

3. F(s) = F(s) is strictly eligible in C - 6.
Side conditions for PFEXT:

1. the position of F (u) is eligible in C - 6;
2. the type of u is 7 — v;

(uAv, L, urx1lVvoxl)
(uVwo, L, v=l)
(u—=v, L, vxl)

3. w € Tpg is a term of type 7 — v whose nonfunctional yellow subterms are different

variables and the variables in ¥ (w) do not occur in C[F (u)].

4. uf = wp;

5. p is a grounding substitution that coincides with 6 on all variables in C[¥ (u)].

44 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Side conditions for PFDIFF:

1. 7 and v are ground types;
2. u,w, s € Iipg are terms whose nonfunctional yellow subterms are different fresh variables;
3. 0 is a grounding substitution.

5.3.2. Indexed Partly Substituted Ground Higher-Order Level. The calculus IPGInf™*¢
is parameterized by a relation > and a selection function sel. We require that > is an
admissible term order for IPGInf in the following sense:

Definition 5.21. Let > be a relation on Zgound(31), on clauses over Zground(21), and on
closures (ipg. Such a relation > is an admissible term order for IPGInf if it fulfills the
following properties:

(Ol)ipg the relation > on ground terms is a well-founded total order;

(O2)1pg ground compatibility with yellow contexts: s’ > s implies t{s"y > t{s) for ground
terms s, ', and t;

)ipc ground yellow subterm property: t< sy = s for ground terms s and ¢;

Jirg uw > L > T for all ground terms u ¢ {T,L};

Jipc u = udiffyy for all ground terms s,t,u: 7 — v.

)irc the relation > on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];

(O7)1pg for closures C -6 and D - p, we have C' - = D - p if and only if C0 = Dp.

The rules of IPGInf™ ¢ (abbreviated IPGInf) are the following. We assume that for
the binary inference IPGSuP, the premises do not have any variables in common, and we
define x(p U #) as zp if = occurs in the left premise and as z6 otherwise.

D
——
D'vt=t-p C<u>-0
p p IPGSup
D'vC<ty - (pub)
with the following side conditions:
1. tp = ub;
2. u is not a variable;
3. u is nonfunctional;
4. tp = t'p;
5. Dp < C<ub,
6. the position of u is eligible in C - 0;
7. t &= t' is strictly eligible in D - p;
8. if #p is Boolean, then t/p = T.
C C
—— -
C'Vugu -0 C'vu =vVuxv -0
y IPGEQREs - ; ; IPGEQFAcT
c -0 C'Vo#uv Vurcv -0
Side conditions for IPGEQRES:
1. ub = u/0;

2. u ' is eligible in C - 6.
Side conditions for IPGEQFACT:

OPTIMISTIC LAMBDA-SUPERPOSITION 45

uf = u'0;

u &~ v -0 is maximal in C - 0;

there are no selected literals in C - 6;
uf = vl.

Ll e

C'vs=t-0
C'vD-0
with the following side conditions:
1. s &t is strictly eligible in C" V s ~ ¢ - 6;

2. The triple (s,tf, D) has one of the following forms, where 7 is an arbitrary type and u, v
are arbitrary terms:

(uAv, T, uxT)

IPGCLAUSIFY

ulAv, T, vxT) (uAv, Ly ux LVoal)
uVuo, L, ur~ 1) (uVo, L, v=l)
u—v, L, urT) (u—>v, L, vxl)

ugg’ v, T, usw) ugg’ v, L, umw)
—u, T, u~ 1) -u, L, uxT)
Cluy -0 Cluy -0
IPGBooLHOIST IPGLooBHOIST
C<L>VvVuxT-0 C<T>Vu1-0

each with the following side conditions:

1. u is of Boolean type;

2. w is not a variable and is neither T nor L;

3. the position of u is eligible in C - 8;

4. the occurrence of u is not in a literal L with L8 = (uf =~ L) or LO = (uf = T).

c
——
C'vsa~th

—— IPGFALSEELIM

c'-6

with the following side conditions:
1. (s=t)f=L~T;
2. s &2 t is strictly eligible in C - 6.
C
——
C'Vs~s-0
C' v s diff]y ~ s diffy, - 0

with the following side conditions:

IPGARrRGCONG

1. sis of type 7 — v;
2. u,w are ground terms of type 7 — v;
3. s ~ s is strictly eligible in C - 6.

46

A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Cluy -0

Clw>Vu difF;’éJwP % w diff;gpr - p

IPGEXT

with the following side conditions:

U W=

the position of u is eligible in C'<u) - 0;

the type of u is 7 — v;

w € Trpg is a term whose nonfunctional yellow subterms are different fresh variables;
ub = wp;

p is a grounding substitution that coincides with 6 on all variables in C<u).

IPGDIFF
wdiff) o udiffy) oVuscws-0

with the following side conditions:

1.
2.
3.

7 and v are ground types;
u,w, s € Trpg are terms whose nonfunctional yellow subterms are different variables;
0 is a grounding substitution.

5.3.3. Partly Substituted Ground Higher-Order Level. Like on the other levels, the calculus
PGInf is parameterized by a relation > and a selection function sel.

Definition 5.22. Let > be a relation on Zgound(XH), on clauses over Zground (1), and on
Cpc- Such a relation > is an admissible term order for PGInf if it fulfills the following
properties:

O1)pg the relation > on ground terms is a well-founded total order;
02)pi ground compatibility with yellow contexts: s’ = s implies t¢s"y > <> for ground

terms s, s’, and t;
pc ground yellow subterm property: t{s» = s for ground terms s and t;

pc u > udiff(r,v)(s,t) for all ground terms s,t,u : 7 — v.

(03)
(O4)pg u = L > T for all ground terms u ¢ {T, L};
(05)
(06)

pc the relation > on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];

(O7)pg for closures C -0 and D - p, we have C -0 = D - p if and only if CO > Dp.

The calculus rules of PGInf are a verbatim copy of those of IPGInf, with the following

exceptions:

— PGInf uses Xy instead of X1 and Cpg instead of Gpg.
— The rules are prefixed by PG instead of IPG.
— PGARGCONG uses diff (7, v)(u, w) instead of diffy7 .

— PGEXT uses diff (7, v)(u, w) instead of diff ;)

ub,wp"

— PGDIFF uses diff (7, v)(u, w) instead of diff}) .

OPTIMISTIC LAMBDA-SUPERPOSITION 47

5.4. Redundancy Criteria and Saturation. In this subsection, we define redundancy
criteria for the levels PF, IPG, PG, and H and show that saturation up to redundancy on
one level implies saturation up to redundancy on the previous level. We will use these results
in Section 5.6 to lift refutational completeness from level PF to level H.

Definition 5.23. A set N of clauses is called saturated up to redundancy if every inference
with premises in N is redundant w.r.t. V.

5.4.1. First-Order Level. In this subsection, let > be an admissible term order for PFInf
(Definition 5.20), and let pfsel be a selection function on (pr (Definition 5.18).

We define a notion of variable-irreducibility, roughly following Nieuwenhuis and Ru-
bio [24] and Bachmair et al. [3] (where it is called “order-irreducibility”):

Definition 5.24. A closure literal L - 0 € Cpr is variable-irreducible w.r.t. a ground term
rewrite system R if, for all variables « in L, 6 is irreducible w.r.t. the rules s — t € R with
Lo = s ~ t and all Boolean subterms of 6 are either T or L. A closure C -0 € Cpp is
variable-irreducible w.r.t. R if all its literals are variable-irreducible w.r.t. R. Given a set IV
of closures, we write irredg(IN) for the set of variable-irreducible closures in N w.r.t. R.

Remark 5.25. The restriction that L = s =~ t cannot be replaced by C8 = s =t because
we need it to ensure that irredg(N) is saturated when N is.

Here is an example demonstrating that variable-irreducibilty would not be closed under
inferences if we used the entire clause for comparison: Let e = d > ¢ > b > a and
R = {e — b}. Then a notion replacing the restriction Lf = s ~t by Cf = s ~ ¢t would say
that z~aVaz~br=e] and e = cV e~ d are order-irreducible w.r.t. R. By SuP (second
literal of the first clause into the second literal of the second clause), we obtain

r~aVerxcVbard[zr=¢

Now z6 in the first literal has become order-reducible by e — b since e ~ b is now smaller
than the largest literal e =~ ¢ of the clause.

Definition 5.26 (Inference Redundancy). Given ¢ € PFInf and N C (pp, let ¢ €
PFRed;(N) if for all confluent term rewrite systems R oriented by >~ whose only Boolean nor-
mal forms are T and L such that concl(¢) is variable-irreducible, we have RUO =,y concl(t),
where O = irredg (V) if ¢ is a DIFF inference, and O = {E € irredr(N) | E < mprem(¢)}
otherwise.

To connect to the redundancy criteria of the higher levels, we need to establish a
connection to the FInf inference system defined in Section 3.7:

Lemma 5.27. Let tpyp € PFInf>’pfs“’l. Let C1-61,...,Cpn-0p, beits premises and Cppa1-0mi1

its conclusion. Then
CY101 e Cmam

Cerl 9m+1

is a valid FInf™ inference 1r, and the rule names of tpr and g correspond up to the prefives
PF and F.

Proof. This is easy to see by comparing the rules of PFInf and FInf. It is crucial that
the concepts of eligibility match: If a literal or a position is (strictly) eligible in a closure
C -6 € Cpr (according to the PF concept of eligibility), then the corresponding literal or
position is (strictly) eligible in Cf (according to the F concept of eligibility). (]

48 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

5.4.2. Indezed Partly Substituted Ground Higher-Order Level. In this subsubsection, let
> be an admissible term order for IPGInf (Definition 5.21), and let ipgsel be a selection
function on Gpg (Definition 5.18).

To lift the notion of inference redundancy, we need to connect the inference systems
PFInf and IPGInf as follows. Since the mapping ¥ is bijective (Lemma 5.4), we can transfer
the order > from the IPG level to the PF level:

Definition 5.28. Based on >, we define a relation >4 on ground terms 7, ground clauses
Cr, and closures (pr as d = e if and only if F~1(d) = F~!(e) for all terms, clauses, or
closures d and e.

Lemma 5.29. Since > is an admissible term order for IPGInf (Definition 5.21), the
relation > is an admissible term order for PFInf (Definition 5.20).

Proof. This is easy to see, considering that F is a bijection between Zgound (1) and TlfF"d
(Lemma 5.4), that higher-order yellow subterms and first-order subterms correspond by
Lemma 5.6, that F maps each side of each literal individually, and that #(C)¥ () = F(C0)
for all C'- 0 € Gpg (Lemma 5.5).]

Since ¥ is bijective, we can transfer the selection function as follows:

Definition 5.30. Based on ipgsel, we define ¥ (ipgsel) as a selection function that selects
the literals of C' € Cpr corresponding to the ipgsel-selected literals in F *1(6’).

Definition 5.31. We extend F to inference rules by mapping an inference « € IPGInf to
the inference

F (prems(t))
F (concl(r))
Lemma 5.32. The mapping F is a bijection between IPGInf™ P9 and PFInf™ 7% (pgsel)

Proof. This is easy to see by comparing the rules of IPGInf and PFInf. It is crucial that
the following concepts match:

— Green subterms on the PF level correspond to green subterms on the IPG level by
Lemma 5.7.

— The term orders correspond (Definition 5.28).

— The selected literals correspond; i.e., a literal L is selected in a closure C - 6 if and only
if the literal 7 (L) is selected in F(C - #). This follows directly from the definition of
F (ipgsel) (Definition 5.30).

— The concepts of eligibility correspond; i.e., a literal L of a closure C'- 0 € (Gipg is (strictly)
eligible w.r.t. > if and only if the literal F (L) of the closure F(C - 0) is (strictly) eligible
w.r.t. >=¢; and a position L.s.p of a closure C' - § € (pg is eligible w.r.t. > if and only
if the position ¥ (L).F (s).q of the closure F(C -) is eligible w.r.t. >4, where ¢ is the
position corresponding to p. This is true because eligibility (Definition 5.19) depends only
on the selected literals and the term order, which correspond as discussed above. []

Definition 5.33. Given a term rewrite system R on 7g, we say that a closure C' - 0 € Gpg
is variable-irreducible w.r.t. R and > if F(C' -) is variable-irreducible w.r.t. R and >#. We
write irredg (V) for all variable-irreducible closures in a set N C (Gpg-.

Definition 5.34 (Inference Redundancy). Given ¢ € IPGInf™ %% and N C Gpg, let
t € IPGRed1(N) if for all confluent term rewrite systems R on 7% oriented by >4 whose

OPTIMISTIC LAMBDA-SUPERPOSITION 49

only Boolean normal forms are T and L such that concl(t) is variable-irreducible w.r.t. R,
we have

RUO Eox F(conel(r))
where O = irredg(F (N)) if ¢ is a IPGDIFF inference, and O = {F € irredg(F (N)) | E <¢
F (mprem(1))} otherwise.

Lemma 5.35. Let upg € IPGInf™ ™9, Let Cy - 61,...,Cp - O be its premises and
Cin+1 + Omy1 its conclusion. Then

T(Cm+1‘9m+l)

is a valid FInf™% inference ip, and the rule names of uipg and g correspond up to the
prefires IPG and F.

Proof. By Lemma 5.32, we know that ¥ (t1pg) is a valid PFInf>fJ(ipgsel) inference, and the
rule names coincide up to the prefixes PF and IPG.

Now, applying Lemma 5.27 to ¥ (t1pc) and using the fact that F(C;) F (0;) = F(Cib6;)
(Lemma 5.5), we obtain that

F(Crm+1m+1)

is a valid FInf~% inference tp, and the rule names of ¥ (t;pg) and tp correspond up to the
prefixes PF and F.

Combining these two results, we conclude that the rule names of ¢;pg and g correspond
up to the prefixes IPG and F, which completes the proof. []

Using the bijection between IPGInf and PFInf, we can show that saturation w.r.t.
IPGInf implies saturation w.r.t. PFInf:

Lemma 5.36. Let N be saturated up to redundancy w.r.t. IPGInf™ "9l Then F(N) is
saturated up to redundancy w.r.t. PFInf>7 7 (ipgsel),

Proof. By Lemma 5.32 because the notions of inference redundancy correspond. []

5.4.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let > be an
admissible term order for PGInf (Definition 5.22), and let pgsel be a selection function on
Cri (Definition 5.18).

Since mapping 7 is clearly bijective for ground terms and ground clauses, we can transfer
>~ from the PG level to the IPG level as follows:

Definition 5.37. Let > be a relation on Zgound(XH), on clauses over ZTground (X1), and
on closures Cpg. We define a relation >; on Zground(2X1) and on clauses over Zground (1)
as d =y e if and only if 771(d) = 77!(e) for all terms or clauses d and e. For closures
C-0,D-pe (Cpg, we define C-0 =5 D-pif CO >4 Dp.

Lemma 5.38. Since = is an admissible term order for PGInf (Definition 5.22), the relation
=4 is an admissible term order for IPGInf (Definition 5.21).

Proof. This is easy to see, considering that 7 is a bijection on ground terms and that 7 and
97! preserve yellow subterms. []

50 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Lemma 5.39. Given D-p,C-0 € Cpg, we have D-p > C-0 if and only if J(D-p) =4 J(C-0).

Proof. By (O7)ipg, D -p = C -0 if and only if CO = Dp. By Definition 5.37, this is
equivalent to J(Dp) =4 J(CH). Since J(Dp) = J,(D)I(p) and J(CO) = Jo(C)I(0) by
Lemma 5.9, this is equivalent to 7,(D)7(p) =5 Jo(C)J(0). By (O7)1pg, this is equivalent to
J(D-p) =5 3(C-0). O

Definition 5.40. Given a term rewrite system R on 7p, we say that a closure C'- 6 € (pg is
variable-irreducible w.r.t. R if F(J(C -6)) is. We write irredg (V) for all variable-irreducible
closures in a set N C (pg.

Definition 5.41 (Inference Redundancy). Let N C Cpg. Let ¢« € PGInf an inference with
premises C - 01, ..., Cp, - O, and conclusion Cp 41 - Oppr1. We define ¢ € PGRed;(N) if

1. the inference (/' given as

F(I(Cms10m+1))

is not a valid FInf~ inference such that the names of + and ' correspond up to the
prefixes PG and F; or

2. for all confluent term rewrite systems R oriented by 47 whose only Boolean normal
forms are T and L such that C,41 - 6,41 is variable-irreducible, we have

RUO Eox F(I(Crs1 - Omy1))

where O = irredg(F (J(N))) if ¢ is a PGDIFF inference and O = {E € irredgr(F (J(N))) |
E <59 F(I(Cpbm))} if ¢ is some other inference.

We transfer the selection function pgsel as follows:

Definition 5.42. Let N C (Cpq be a set of closures. Then we choose a function]ﬁl,
depending on this set N, such that 7,'(C) € N and J(J5'(C)) = C for all C € J(N).
Then we define J(pgsel, N) as a selection function that selects the literals of C' € J(N)
corresponding to the pgsel-selected literals in]JQI(C) and that selects arbitrary literals in
all other closures.

Lemma 5.43. Let N C Cpg be saturated up to redundancy w.r.t. PGInf~ P9 Then J(N)

is saturated up to redundancy w.r.t. IPGInf~77(PsebN)

Proof. Let / be a IPGInf~77(P95ebN) inference from J(N). We must show that J/ €
IPGRed;(J(N)). Tt suffices to construct a PGInf inference ¢ with premises 75" (prems(’))
such that 7(concl(t)) = concl(/') and the rule names of ¢ and ¢/ coincide up to the pre-
fixes PG and IPG. Then, by saturation, t € PGRedi(N); i.e., condition 1 or condition 2
of Definition 5.41, is satisfied. Condition 1 cannot be satisfied because it contradicts
Lemma 5.35 applied to «/. Thus, condition 2 must be satisfied. Then, by Definition 5.34,
/' € IPGRed1(J(N)).

Finding such an inference ¢ is straightforward for all inference rules. We illustrate it
with the rule IPGEQRES: Let ¢/ be

C’'vVugu -0
C' -0

IPGEQRES

OPTIMISTIC LAMBDA-SUPERPOSITION 51

Then there exists a corresponding PGInf inference ¢ from Jy'(C' V u ' - 6). (See
Definition 5.42 for the definition of 7 1.) The eligibility condition is fulfilled because the
term order, and the selections are transferred according to Definitions 5.37 and 5.42 and
Lemma 5.39. The equality condition is fulfilled by Lemma 5.10. The conclusion concl(t) of
this inference has the property J(concl(t)) = concl(('), as desired. []

5.4.4. Full Higher-Order Level. In this subsubsection, let > be an admissible term order
(Definition 3.16) and let hsel be a selection function (Definition 3.18). We extend > to
closures Cpg by C'-0 = D - p if and only if C8 >~ Dp. Then we can use it for PGInf as well:

Lemma 5.44. The relation > is an admissible term order for PGInf.

Proof. Conditions (O1) to (O6) are identical to conditions (O1l)pg to (O6)pg. Condi-
tion (O7)pg is fulfilled by the given extension of > to closures. []

Definition 5.45. Given a term rewrite system R on 7p, we say that a closure C'- 0 € (¢
is variable-irreducible w.r.t. R if F(J(P(C -6))) is. We write irredr(N) for all variable-
irreducible closures in a set N C (q.

For the H level, we define both clause and inference redundancy. Below, we write

F92G(C) for F(J(P(G(C)))) and FIP(C) for F(I(P(C))).

Definition 5.46 (Clause Redundancy). Given a constrained clause C' € (i and a set

N C Gy, let C € HRedc(N) if for all confluent term rewrite systems R on Ty oriented by

> g7 whose only Boolean normal forms are T and L and all C’ € irredg(FJPG(C)), at least

one of the following two conditions holds:

1. RU{F € irredr(FIPG(N)) | E <450 C"} E=ox C'; or

2. there exists clauses D € N and D’ € irredg(FJPG(D)) such that C 3 D and T(D') =
T(C".

Definition 5.47 (Inference Redundancy). Let N C (. Let ¢« € HInf an inference
with premises C1[S1], ..., Cin[Swm] and conclusion Cy,41[Sm+1]. We define HRed; so
that « € HRedi(N) if for all substitutions (61, ...,0,,+1) for which ¢ is rooted in FInf
(Definition 3.31), and for all confluent term rewrite systems R oriented by > ¢ whose only
Boolean normal forms are T and L such that Cy, 41 - 6,41 is variable-irreducible, we have

RUO):0)\ T(Cm—ﬁ-lem—l—l)

where O = irredg(FIPG(N)) if ¢ is a DIFF inference and O = {E € irredg(FIPG(N)) |
E <49 F(Cpbpm)} if ¢ is some other inference.

The selection function is transferred in a similar way as with J:

Definition 5.48. Let N C Cg. We choose a function Py!, depending on this set N, such
that P! (C) € N and P(Py*(C)) = C for all C € P(N). Similarly, for N C (i, we choose
a function Gy', depending on this set N, such that Gy'(C) € N and G(Gy'(C)) = C for
all C € G(N).

Then we define PG(hsel, N) as a selection function for (pg as follows: Given a clause
Cpg € PG(N), let Cyy-0 = ‘.PCJT(N)(Cpc;) and Cy[S] = G5*(Cu-0). We define PG (hsel, N) to
select Lpg € Cpg if and only if there exists a literal Ly selected in C[S] by hsel such that
Lpg = Lup(#). Given a clause Cpg & PG(N), PG(hsel, N) can select arbitrary literals.

52 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Lemma 5.49. Let R be a confluent term rewrite system on Tpp oriented by =45 whose only
Boolean normal forms are T and L. Let C'-0,D - p € Cpg. Let C - 0 be variable-irreducible
w.r.t. R. Let o be a substitution such that 20 = zop for all variables z in C and D = Co.
Then D - p is variable-irreducible w.r.t. R.

Proof. Let L be a literal in F(J,(D)). We must show that for all variables z in L, F(J(xp))
is irreducible w.r.t. the rules s — ¢t € R with LF (J(p)) =4 s ~ t and all Boolean subterms
of F(J(xp)) are either T or L. Then there exists a literal Ly € D such that L = F(J,(Lo)).
Let = be a variable in L. Then it is also a variable in Lg, occurring outside of parameters.
Since D = Co, x occurs in Co outside of parameters. Since C' -6 € (pg, the clause C
contains only nonfunctional variables, and thus a literal L € C' with Ljoc = Ly must
contain a variable z outside of parameters such that x occurs outside of parameters in
zo. So F(JI(xp)) is a subterm of F(J(zop)) = F(I(20)). Let L' = F(Jo(L()) € F (Jp(C)).
Then L also contains z. By variable-irreducibility of C - 6, F(J(z0)) is irreducible w.r.t.
the rules s — ¢t € R with L'F(J(0)) =45 s =~ t and all Boolean subterms of F(7(26))
are either T or L. Then the subterm ¥ (J(zp)) of F(J(20)) is also irreducible w.r.t. the
rules s — t € R with L'F(J(0)) =45 s =~ t and all Boolean subterms of ¥ (J(zp)) are
either T or L. It remains to show that L'F(J(0)) = LF (J(p)). We have L'F(7(0)) =
F(LL)F((0) = F(LH0) = F((Lhon) = FUp(Lop) = F(Ip(Lo)F(1(p)) =
LF(J(p)), using Lemma 5.5 and Lemma 5.9.]
Lemma 5.50 (Lifting of Order Conditions). Let t[T] and s[S] be constrained terms over
T(Xn), and let ¢ be a grounding substitution such that SC and T¢ are true. If t¢ = sC, then
t[T] & s[S]. The same holds for constrained literals.

Proof. We prove the contrapositive. If ¢[T] < s[S], then, by (O7), t¢ = s¢. Therefore, since
>~ is asymmetric by (O1), t¢ # sC. The proof for constrained literals is analogous, using

(06) and (0O8). []

Lemma 5.51 (Lifting of Maximality Conditions). Let C[S] € Gi. Let 0 be a grounding
substitution. Let Ly be (strictly) maximal in CO. Then there exists a literal L that is (strictly)
mazximal in C[S] such that LO = Ly.

Proof. By Definition 3.17, a literal L of a constrained clause C[S] is maximal if for all
K € C such that K[S] = L[S], we have K[S] < L[S].

Since Lo € C0, there exist literals L in C[S] such that L0 = Ly. Let L be a maximal
one among these literals. A maximal one must exist because > is transitive on constrained
literals by (09) and transitivity implies existence of maximal elements in nonempty finite
sets. Let K be a literal in C[S] such that K[S] = L[S]. We must show that K[S] < L[S].
By Lemma 5.50, K6 £ L8 = Ly. By (O1), > is a total order on ground terms, and thus
K0 = Lp. By maximality of Ly in Cf, we have K0 < Ly and thus K6 = Ly by (O1).
Then K[S] < L[S] because we chose L to be maximal among all literals in C[S] such that
L6 = L.

For strict maximality, we simply observe that if L occurs more than once in C, it also
occurs more than once in C#. L]

Lemma 5.52 (Lifting of Eligibility). Let N C Gy. Let Cpg - 0pg € PG(N), let Cy -6 =
T;(gv)(CPG -Opg) and let CH[[S]] = g&l(CH -0).
— Let Lpg be a literal in Cpg - Opg that is (strictly) eligible w.r.t. PG(hsel, N). Then there

exists a literal Ly in Cy such that Lpg = Lup(0) and, given substitutions o and ¢ with
x6 = xo(for all variables x in Cu[S], Ly is (strictly) eligible in Cu[S] w.r.t. o and hsel.

OPTIMISTIC LAMBDA-SUPERPOSITION 53

— Let Lpg.spg-ppa be a green position of Cpg -pg that is eligible w.r.t. PG(hsel, N). Then

there exists a green position Ly.sg.pu of Cu such that

— Lpc = Lup(9);

— spa = sup(0);

— * PPG = PH, OT
* ppg = pH-q for some nonempty q, the subterm uy at position Ly.sy.pg of Cy is not

a variable but is variable-headed, and upfd is nonfunctional; and

— given substitutions o and with 0 = xo(for all variables x in Cy[S], Lu.su.pu is

eligible in Cu[S] w.r.t. o and hsel.

Proof. Let Lpg be a literal in Cpg - fpg that is (strictly) eligible w.r.t. PG(hsel, N). By the
definition of eligibility (Definition 5.19), there are two ways to be (strictly) eligible:

— Lpg is selected by PG (hsel, N). By Definition 5.48, there exists a literal Ly selected by
hsel such that Lpg = Lup(f). By Definition 3.19, Ly is (strictly) eligible in Cy[S] w.r.t.
o because it is selected.

— There are no selected literals in Cpg - 0pg and Lpgfpg is (strictly) maximal in Cpgfpg.
By Definition 5.48, there are no selected literals in Cy[[S]. Since Cpgbpg = Cuf = Crod,
by Lemma 5.51, there exists a literal Ly € Cy such that Lyo is (strictly) maximal in
Cuo. By Definition 3.19, Ly is (strictly) eligible in Cy[S] w.r.t. o.

For the second part of the lemma, let Lpg.spq.ppa be a green position of Cpg - pg that
is eligible w.r.t. PG(hsel, N). By Definition 5.19, the literal Lpg is of the form spg =~ tpg
with spgfpc = tpabpc and Lpg is either negative and eligible or positive and strictly
eligible. By the first part of this lemma, there exists a literal Ly in Cy that is either
negative and eligible or positive and strictly eligible in Cy[S] w.r.t. o and hsel such that
Lpg = Lygp(0). Then Ly must be of the form sy ~ ¢ty with spg = sgp(0) and tpg = tup(d).
Since spgbpa >~ tpafpa, we have sy A tir. By Definition 3.19, every green position in Ly.sp
is eligible in Cy[S] w.r.t. o and hsel.

It remains to show that there exists a green position Ly.sy.py in Cy such that either
PPG = PH O ppc = pu.q for some nonempty ¢, the subterm uy at position Lg.sy.pg of Cy
is not a variable but variable-headed, and uyf is nonfunctional.

Since ppg is a green position of spg = sup(f), position ppg must either be a green
position of sy or be below a variable-headed term in sg. In the first case, we set pg = ppc.
In the second case, let py be the position of the variable-headed term. Then py.q = ppg for
some nonempty g. Moreover, since ppg is a green position of spg, the subterm of spg at
position py, which is ugf, cannot be functional. Since p(#) maps nonfunctional variables
to nonfunctional variables, the subterm of sy at position py cannot be a variable, but it is
variable-headed. []

Lemma 5.53 (Lifting Lemma). Let N C (y be saturated up to redundancy w.r.t. HInfhsel,
Then PG(N) is saturated up to redundancy w.r.t. PGInfr TG (hsel.N)

Proof. Let tpg be a PGInf inference from PG(N). We must show that tpg € PGRed1(PG(N)).
It suffices to construct a HInf inference ¢y from N such that ¢z and tpg are of the form

Ci[$] -+ ConlSml P(C1-01) ... P(CpO)

LH LPG
Cm1[Sm+1] E-£ (*)

54 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

for some C1[S1], -+ , Crmt1[Sm+1] € Gu, E - € € Cpg, and grounding substitutions 6, .. .,
Om+1 such that S161,...,5n+10m+1 are true and Cp419p(0m+1) = Em and zmq(041) = €
for some substitution 7 and all variables x in F.

Here is why this suffices: By Definition 5.41, it suffices to show that for all confluent
term rewrite systems R on 7y oriented by >4+ whose only Boolean normal forms are T and
1, such that E - £ is variable-irreducible w.r.t. R, we have

RUO [ox FUI(E -)

where O = irredr(F (J(G(N)))) if tpg is a DIFF inference, and otherwise O = {E €
irredp(F(J(G(N)))) | E < F(I(P(Cy, - 0m)))}. Let R be such a rewrite system. By
Lemma 5.49, since E - £ is variable-irreducible, using Emr = Cir1p(0mt1), and € =
27q(Om+1), also Crp1p(Om+1) - q(Om1) and thus Ch,yq - 0,11 are variable-irreducible w.r.t.
R. By saturation, vty € HRed;(N), and thus, by definition of HRed;, (Definition 5.47), it
suffices to show that ¢y is rooted in FInf for (61,...,0,+1) (Definition 3.31), which holds
by Lemma 5.11, Definition 5.41 and the fact that Cp,110m+1 = Crt1P(0m+1)q(Omr1) =
Eﬂq(‘ngrl) = E¢.

For most rules, the following special case of (x) suffices: We construct a HInf inference
tig from N such that ¢ and tpg are of the form

01[51]] Cm[[Sm]] , ’.P(Cl -91) T(Cm-em) ,
Chio Sl Clp(o€) - € (%)

for some C1[S1],--- , Cnl[Sm], C},i1[Sims1] € Gu and substitutions 60y,...,0,,(,0,§ such
that S161,...,5m0m, S;,,1¢ are true and € = xq(o() for all variables = in C;, p(c().
Here is why this is a special case of (x) with Cpp1 = C;, 10, Smy1 = Sy, £ =

C,,11p(0¢): By Lemma 5.16, there exists a substitution 7 such that op(¢) = p(c()7 and

q(0¢) = mq(C). Thus, Cri1p(¢) = Cy4100(C) = O 1 p(0Q)m = Em and z7q(¢) = zq(o() =
x€ for all variables x in F, as required for (k).

PGSuP: If tpg is a PGSUP inference

Dpg
N\

Dpg V tpa = tpg - ppc Cpa<upc> - Opa

; ; PGSup
Dpg V Cpaltpey - (ppc Ubpc)

then we construct a corresponding SUP or FLUIDSUP inference ty1. Let Dy-ppp = ?g_(lN)(Dp(;-

ppc) and Cy - Oy = fpg_(lN)(CpG - Opi). (See Definition 5.48 for the definition of ng_(lN).) Let

DulT] = G5'(Du - pu) and Cu[S] = G5 (Ci - 1) (See Definition 5.48 for the definition
of Gy'.) These clauses Dy[T] and Cy[S] will be the premises of . Condition 7 of PGSup
states that ¢ty ~ t}; is strictly eligible in Dpg - ppg. Let Dy = Dj; V tu = t}y, where tg = tj
is the literal that Lemma 5.51 guarantees to be strictly eligible with typ(fy) = tpg and
typ(0n) = tphy. Condition 8 of PGSUP states that if tpyppg is Boolean, then tpoppg = T.
Thus, there are no selected literals in Dpg - ppg. By Definition 5.48, it follows that there
are no selected literals in Dy[T] - pu (condition 7 of SUP or FLUIDSUP) and that ty ~ t; is
strictly maximal (condition 6 of SUP or FLUIDSUP). Let Lpg.spg.ppg be the position of
the green subterm upg in Cpg. Condition 6 of PGSUP states that Lpg.spg.ppg is eligible
in Cpg - Opg. Let Ly.sg.pu be the position in Cy that Lemma 5.52 guarantees to be eligible

OPTIMISTIC LAMBDA-SUPERPOSITION 55

in Cy[[S] w.r.t. any suitable o (condition 5 of SUP or FLUIDSUP). Let uy be the subterm
of Cy at position Ly.sp.pg. By Lemma 5.52, one of the following cases applies:

CASE 1: ppa = pg. Then we construct a SUP inference.

Lemma 5.52 tells us that spg = spp(fu) and thus upg = upp(fu) because ppg = pu.
By condition 1 of PGSuP, tpgppc = upglpg. It follows that tgpn = tup(pn)q(pn) =
tpapre = upclpc = upp(0u)q(0n) = upbu. Let pg U O be the substitution that coincides
with ppr on all variables in Dy [T] and with 6 on all other variables. Then pgU#6y is a unifier
of t;7 and uyg. Moreover, by construction, Tpg and SOy are true. Thus, by definition of
CSU"P' (Definition 3.11), there exists (o, U) € CSU"PY™ (T, S, ty = up) (condition 1 of SUP)
and a substitution ¢ such that U(is true and xo(= z(pg U Oy) for all relevant variables x.

Conditions 2 and 3 of PGSuP state that upg = upp(fm) is not a variable and nonfunc-
tional. Thus, by definition of p, ug is not a variable and upo is nonfunctional (conditions
2 and 3 of Sup).

By Lemma 5.50, the condition (tg[7]) A (t4[7]) (condition 4 of Sup) follows from
condition 4 of PGSuP.

Finally, the given inference tpg and the constructed inference vy are of the form (k)
with Cl[[Sl]] = DH[[TH, 02[[52]] = CH[[S]], Cé = D,H vV CH<ti{>PH Sé =U, 01 = pu, 02 = 0y,
and § = ppg U Opg.

CASE 2: ppg = pu.q for some nonempty ¢, uy is not a variable but is variable-headed, and
uyf is nonfunctional. Then we construct a FLUIDSUP inference.

Lemma 5.52 tells us that spq = spp(fr). Thus, the subterm of spg at position py is
upp(fr). So ¢ is a green position of upp(fy), and the subterm at that position is upg—i.e.,
upp(fur) = (unp(On))<upcyq. Let v = X (upp(fu))<{n>q, where n is the appropriate De
Bruijn index to refer to the initial .

Let z be a fresh variable (condition 8 of FLUIDSUP). We define 6y by z0}; = vfpg,
xzby = xpn for all variables = in Dy[T] and z60}; = x6y for all other variables z. Then,
using condition 1 of PGSUP, z tyby; = vlpc (tupu) = vépc (tpappc) = vlpg (upclpc) =
(UUPg)HpG = (qu(eH))<ng>q9pG = qu(eH)(ng = UHQH = uHH{{ So Hh is a unifier OthH
and uy. Thus, by definition of CSU (Definition 3.13), there exists a unifier o € CSU(2 ty =
up) and a substitution ¢ such that xo(= z6; for all relevant variables x (condition 1 of
FrLuipSuP).

By the assumption of this case, uy is not a variable but is variable-headed (condition 2
of FLUIDSUP).

Since ¢ is a green position of upp(fi), the type of ump(fy) and the type of upo is
nonfunctional (condition 3 of FLUIDSUP).

By Lemma 5.50, the condition tg[T] A t;[T] (condition 4 of FLUIDSUP) follows from
condition 4 of PGSuP.

By condition 4 of PGSuP, typny = tpappg # t’pGpPG = t’HpH. Thus, (z tg)o¢ =
vpc (tnpn) = (unp(0n))0pc<tupn>q # (unp(On))fpc<typn>q = vpc (typn) = (2 ty)oC.
So, (zty)o # (2 tu)o (condition 9 of FLUIDSUP).

Since zo(= vfpg and vlpg # A0 because ¢ is nonempty, we have zo # A0 (condition 10
of FLUIDSUP).

The inferences tpg and tg are of the form (%) with C1[S1] = Du[T7], C2[S2] = Cu[S],
C3[93] = (Dy V Cu<z typpy [T, S])o, 61 = pu, 02 = 0, 03 = ¢, E = Dp V Cpa<tpcdppa
and £ = ppg U Opg. In the following, we elaborate why Csp(03) = Em and zmq(f3) = € for
some substitution 7 and all variables = in E, as required for (x). We invoke Lemma 5.16 to

56 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

obtain a substitution 7 such that op(¢) = p(c()m and q(c¢) = 7q(¢). Then

C3p(03) = (Dy V Cuz tpdpy)op(C)
= (DhUP(C) V Crop(C)< (2 tir)op(C)>py)

Y (Dyop(C) V Cuop(Q)< (= tin)op(Q) < trop(C)>edpm)
2 (Dygop(C) V Crop(C) <unop(C)<top(C)>gdpm)
=N

Dyyop(C) V Cuop(O)<top(C)peg)

= (Dyp(eQ)m V Cup(oQ)m<typ(0()mppg)

= (Dyp(a¢) v CHP(UC)<thp(UC)>pPG)ﬁ

= (Dpg V Cra{tpeppe)T

=BT
Step (1) can be justified as follows: By Lemma 5.12, zop(¢)q(¢) = vfpg. Since zop(¢) and
vfpg contain only nonfunctional variables, zop(¢) must be a A-abstraction whose A binds
exactly one De Bruijn index, which is located at orange position 1.q w.r.t. |gyiong. Thus,
(z tm)op(C) and (= t};)op(C) are identical up to the subterm at green position ¢, which is

trop(€) and tyop(C) respectively. For step (2), we use that (z ty)o = upo. For step (3), we
use that wuy is the green subterm of Cyp at position py.

PGEQRES: If tpg is an PGEQRES inference

Cpa

/ !/
Cpg V upg % upg - bpa

PGEQRES

Cpa - Opa
, then we construct a corresponding EQRES inference ty. Let Cy - 0g = _’P;(lN)(C’pG - Opg)
and Cy[S] = G5 (Ch - O). This clause Cy[S] will be the premise of ¢y.

A condition of PGEQRES is that upg % up is eligible in Cpg - Opg. Let Cy = Cfy V
up % ujy, where ug 5 ujy is the literal that Lemma 5.52 guarantees to be eligible w.r.t. any
suitable o, with upp(fu) = upg and uyp(fu) = upg.

Another condition of PGEQRES states that upgfpc = upgbpc. Thus, unby = uibu,
and therefore there exists (o, U) € CSU"P°(S, uy = ujy) and a substitution ¢ such that U¢
is true and xo(= z6y for all variables = in Cy[S].

Finally, the given inference tpg and the constructed inference (g are of the form (xx)
with C1[S1] = CulS], Cy = Cyj;, S5 =U, 61 = 0y, and £ = Opg.

PGEQFAcCT: If tpg is an PGEQFACT inference

Cpa

! ! /
Cpi V upg = vpg V upG = vpa - Opc

; p p PGEQFaAcT
Cpa V vpa % vpg V upg = vpg - fpg

then we construct a corresponding EQFACT inference tyy. Let Cy - 0y = inf(lN)(CpG - Opg)

and Cy[S] = G5 (Ch - O). This clause Cy[S] will be the premise of ¢y.
A condition of PGEQFACT is that upg =~ vpg - fpg is maximal in Cpg - Opg. Let
ug ~ vy be the literal that Lemma 5.51 guarantees to be maximal in Cy[S] w.r.t. any

OPTIMISTIC LAMBDA-SUPERPOSITION 57

suitable o, with upp(fn) = upg and vap(fr) = vpg. Choose Cjj, ujy, and vy such that
Cu=Cq{ Vuy = vy Vug ~vn, Cp(0u) = Cpa, ugp(0u) = upg, and vp(fu) = vpg-

Another condition of PGEQFACT states that there are no selected literals in Cpg - Opc.
By Definition 5.48, it follows that there are no selected literals in Cy[S].

Another condition of PGEQFACT states that upcfpc = upgfpg. Thus, unbfu = uybn,
and therefore there exists (o, U) € CSU"P* (S, uyg = u};) and a substitution ¢ such that U¢
is true and xo¢ = 26y for all variables x in Cy[[S].

The last condition of PGEQFACT is that upgfpg = vpafpg—i.e., ugo(= vgol. By
Lemma 5.50, (ug[S])o A (vu[S])e.

Finally, the given inference tpg and the constructed inference vy are of the form (k)
with Cl[[Sl]] = CH[[S]], Cé = CI/-I V v # U{_I Vug ~ Ui—l? Sé =U, 01 = 0y, and £ = Opg.

PGCLAUSIFY: If tpq is a PGCLAUSIFY inference

Cpa

Che V spg =~ tpg Opc
Cpg V Dpc - bpg

PGCLAUSIFY

with 7pg being the type and upg and vpg being the terms used for condition 2. Then we
construct a corresponding CLAUSIFY inference tg. Let Cy - g = Pl)(CPG - Opg) and

G(N
CulS] = Gx' (Cu - O). This clause Cy[S] will be the premise of ¢y.

Condition 1 of PGCLAUSIFY is that spg =~ tpq is strictly eligible in Cpg - Opg. Let
Cy = Cf; V sy =~ ty, where sy = ty is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable o (condition 2 of CLAUSIFY), with sgp(fn) = spg and
tup(fu) = tra.

Comparing the listed triples in PGCLAUSIFY and CLAUSIFY, we see that there must be
a triple (s}, ty, Du) listed for CLAUSIFY such that (sjp,typ, Dup) = (spa,trabpc, Dpa)
with p = {a — Tpg, x — upg, y — vpg} is the triple used for tpg (condition 4 of CLAUSIFY).
Inspecting the listed triples, we see that spg cannot be a variable and that spafpc = sufn
is of Boolean type. It follows that sy is not a variable (condition 3 of CLAUSIFY) because if
it were, then, by definition of p, sgp(fg) = spg would be a variable.

Moreover, we observe that spfy = spabpc = sypbpc and tubuy = tpabpc = thp =
typOpc. Thus the substitution mapping all variables = in sy and t}; to zpfpc and all
other variables x to 20y is a unifier of sy = s’H and ty = ti{. So there exists a unifier
o € CSU(suy = sy, tu = tyy) (condition 1 of CLAUSIFY) and a substitution ¢ such that
xo(= xfy for all variables z in Cy[S].

Finally, the given inference tpg and the constructed inference (g are of the form (xx)
with C1[S1] = Cu[S], Cy = Cf; V Dy, Sy = So, 01 = 6y, and § = Opg.

PGBooLHoIsT: If 1pg is a PGBOOLHOIST inference

Cpa<upay - fpa
Cpa{L> Vupg =T -0Opg

PGBooLHoIsT

then we construct a corresponding BOOLHOIST or FLUIDBOOLHOIST inference ty. Let
Cu-by = ng(lN)(Cp(;-Hp(;) and Cu[S] = Q&I(CH-GH). This clause Cy[S] will be the premise
of ty. Let Lpg.spa.ppa be the position of upg in Cpg. Condition 3 of PGBOOLHOIST states
that Lpg.spa.ppg is eligible in Cpg - Opg. Let Ly.sg.pu be the position that Lemma 5.52
guarantees to be eligible in Cy[S] w.r.t. any suitable o (condition 3 of BooLHOIST or

58 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

condition 8 of FLUIDBOOLHOIST). Let uy be the subterm at position Ly.sy.py in Cy[S].
By Lemma 5.52, one of the following cases applies:

CASE 1: ppg = pg. Then we construct a BOOLHOIST inference.

Lemma 5.52 tells us that spg = spp(fu) and thus upg = ugp(fy) because ppg = pu.
By Condition 1 of PGBOOLHOIST, upg = upp(fn) is of Boolean type and thus upfy is of
Boolean type. So there exists a most general type substitution ¢ such that ug is Boolean
(condition 1 of BOOLHOIST) and a substitution ¢ such that zo(= zfy for all variables x in
CulS].

By condition 2 of PGBOOLHOIST, upg = upp(fu) is not a variable and is neither T
nor L. By condition 1 of PGBOOLHOIST, upg = umgp(fu) is nonfunctional. So, using the
definition of p, uy is not a variable and is neither T nor L (condition 2 of BooLHOIST).

By condition 4 of PGBOOLHOIST, Lpgfpg is not of the form upgfpg ~ T or upgblpg =
1. Since Lpafpg = Lufy and upgfpg = unby, it follows that Ly is not of the form uy ~ T
or upg ~ L (condition 4 of BOOLHOIST).

Finally, the given inference tpg and the constructed inference vy are of the form (k)
with 01[[51]] = CH[[S]], Cé =Cg<L>oVug~=T, Sé = So, 01 = 0y, and £ = bpg.

CASE 2: ppg = pu.q for some nonempty ¢, uy is not a variable but is variable-headed, and
up# is nonfunctional. Then we construct a FLUIDBOOLHOIST inference. By the assumption
of this case, uy is not a variable but is variable-headed (condition 1 of FLUIDBOOLHOIST).

Lemma 5.52 tells us that spgq = spp(fr). Thus, the subterm of spg at position py is
upp(fi). So ¢ is a green position of upp(fy), and the subterm at that position is upg.

Since upg is the green subterm at position ¢ of upp(fu), unp(0u) = (uap(fu))<upc>q-
Let v = A (upp(fu))<{n>q, where n is the appropriate De Bruijn index to refer to the initial
A

Let zy and zpy be fresh variables (condition 3 of FLUIDBOOLHOIST). We define 6}; =
(QH[ZH — vepg,mH — quepG]). Then (ZH xH)Qh = 7)913(; (UPGeP(;) = (1) UPG)GPG =
(vunp(fn))fpc = (unp(0m))<unp(On)>qfpcunp (fu)fpa = unp(0n)q(fn) = unbaunby. So
0} is a unifier of zg xy and ug. Thus, by definition of CSU (Definition 3.13), there exists
a unifier 0 € CSU(zy oy = un) and a substitution ¢ such that zo(= 26} for all relevant
variables x (condition 4 of FLUIDBOOLHOIST).

Since ¢ is a green position of upp(fi), the type of ugp(fy) and the type of upo is
nonfunctional (condition 2 of FLUIDBOOLHOIST).

Since zo(= vfpg and vlpg # A0 because ¢ is nonempty, we have zo # A0 (condition 6
of FLUIDBOOLHOIST).

Condition 3 of PGBOOLHOIST states that upg is not a variable and is neither T nor
1. So upgbpg = xpo(is neither T nor L and thus xyo is neither T nor L (condition 7 of
FLuibBooLHo1ST). Moreover, (zn 21)o¢ = vfpc (upcbpc) = (unp(0u)lpc)upcbpc>q #
(uap(01)bpc)<L>40pc = vlpg L = (2 L)o¢. Thus, (2n zn)o # (zu L)o (condition 5 of
FruibBooLHoOIST).

The inferences tpg and ¢y are of the form (x) with C1[Si] = Cul[S], C2[S2] =
(CH<ZH J—>PH V g & T[[SH)U, 0L =0y, 60 = (, E = Cp(;<J_>pPG V upg =~ T, and
¢ = Opg. In the following, we elaborate why Cap(62) = En and zmq(f2) = z€ for some
substitution 7 and all variables x in E, as required for (x). The reasoning is similar to
that in the FLUIDSUP case. We invoke Lemma 5.16 to obtain a substitution 7 such that

OPTIMISTIC LAMBDA-SUPERPOSITION 59

op(¢) = p(o¢)m and q(o¢) = mq(¢). Then
Cop(62) = (Cu<za Lpy Vou = T)op(()
= Cuop(Q)<(zu L)op(()py V zuop(() =~ T

(1:) CHU}J(C)<(ZH IL’H)O']J(C)<J_>q>pH Vaupar =T

D Crop(Q)<unop(O)< Logopy V upar ~ T

3
2 Cuop(Q)<Lpp V upar ~ T

= CH]J(UC)W<_L>pPG Vupagmr =T

= (Cup(0Q)<Loppe V upc = T)m

= (Cpg<J_>pPG V upg ~ T)7T

=FEn
Step (1) can be justified as follows: By Lemma 5.12, zgop(¢)q(¢) = vfpg. Since zpop(C)
and v contain only nonfunctional variables, zgop({) must be a A-abstraction whose A
binds exactly one De Bruijn index, which is located at orange position 1. w.r.t. |g,long-
Thus, (zu zr)op(¢) and (zg L)op(¢) are identical up to the subterm at green position g,
which is zpop(¢) and L respectively. So, (zn L)op(¢) = (2 zn)op({)<L>,. Moreover,

since (zu u)op(Q)<zuop(()>q = (zu zu)op(() = unop(C) = uup(cd)m = upp(fu)r =
ugp (0n)<upc>qm, we have xgop(¢) = upgn. For step (2), we use that (zp 2u)o = ugo. For
step (3), we use that uy is the green subterm of Cy at position py.

PGLoOOBHOIST: Analogous to PGBOOLHOIST.

PGFALSEELIM: If tpg is a PGFALSEELIM inference

Cpc
I3

/
CPG V spa =~ tpg -Opc

; PGFALSEELIM
Cpq - brc

then we construct a corresponding FALSEELIM inference ty;. Let Cpp - 0 = fP(]T(lN)(C’pG -0pc)

and Cy[S] = G5 (Ci - Ou). This clause Cy[S] will be the premise of ¢j.

Condition 2 of PGFALSEELIM states that spg = tpg is strictly eligible in in Cpg - fpc.
Let Cyg = CI/{ V sy & ty, where sy & ty is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable o (condition 2 of FALSEELIM), with syp(fi) = spg and
th(GH) =tpg.

Condition 1 of PGFALSEELIM states that (spqg =~ tpg)fpg = L =~ T. So 6y is a
unifier of sy = L and tg = T. By construction, SOy is true. So there exists (o,U) €
CSU"PY(S sy = L,ty = T) (condition 1 of FALSEELIM) and a substitution ¢ such that U(
is true and xo¢ = 26y for all variables x in Cy[S].

The inferences tpg and ¢y are of the form (xx) with C1[S1] = Cu[S], C4 = Cf; V su ~ tu,
Sy =U, 01 = 6y, and £ = Opg.

PGARGCONG: If tpg is a PGARGCONG inference

Cpa

/ /
CPG V Spa =~ SPG 'QPG

PGARGCoONG
CIIT’G V spa diff<7’, U>(uP(;, u)p(;) ~ S,PG diff(T, U>(UP(;, wp(;) -Opc

60 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

then we construct a corresponding ARGCONG inference . Let Cy - 0 = 1’;(1]\[)(013(; -Opc)

and Cy[S] = G5 (Ch - On). This clause Cy[S] will be the premise of ¢y.

Condition 3 of PGARGCONG states that spg & sp is strictly eligible in in Cpg - Opg.
Let Cy = Cf V su = sy, where sy = s is the literal that Lemma 5.52 guarantees to be
strictly eligible w.r.t. any suitable o (condition 2 of ARGCONG), with sup(fn) = spg and
sup(0n) = spa-

Let = be a fresh variable (condition 3 of ARGCONG). Let 6} = Oz — diff (7, v)(upg,
’wpg)].

Condition 1 of PGARGCONG states that spg is of type 7 — v. Since PG does not
use type variables, 7 and v are ground types, and thus spgfpg = subun = suby; is of type
7 — v. Let o be the most general type substitution such that spo is of functional type
(condition 1 of ARGCONG), and let ¢ be a substitution such that yo¢ = y6}; for all type and
term variables y in Cy[S].

Then, the given inference tpg and the constructed inference g are of the form (xx) with
C1[51] = CulS], C) = Cho V suo x = syo x, Sy = So, 01 = 0y, & = q(0}), ¢ = 0}, and
o={}.

PGEXT: If tpg is a PGEXT inference

Cpalupcy - fpc -

Cpa<wpgy V upg diff (1, v)(upg, wpa) % wpg diff (7, v)(upa, wpg) - p

then we construct a corresponding EXT or FLUIDEXT inference ty. Let Cy-0g = T;(IN) (Cpg-

Opc) and Cu[S] = Gn'(Cu - 0u). This clause Cy[S] will be the premise of . Let
Lpg.spa.ppc be the position of the green subterm upg in Cpg. Condition 1 of PGEXT
states that Lpg.spa.ppg is eligible in Cpg - Opg. Let Ly.sg.pu be the position in Cy that
Lemma 5.52 guarantees to be eligible in Cy[S] w.r.t. any suitable o (condition 3 of EXT
or condition 7 of FLUIDEXT). Let upg be the subterm of Cy at position Ly.sy.pg. By
Lemma 5.52, one of the following cases applies.

CASE 1: ppg = pg. Then we construct an EXT inference.

Condition 2 of PGEXT states that upg = ugp(fy) is of functional type. Let o be the
most general type substitution such that upgo is of type 7 — v for some types 7 and v
(condition 1 of EXT). Let y be a fresh variable of the same type as upo (condition 2 of
EXT). Let 0} = 0uly — wpap]. Let ¢ be a substitution such that zo¢ = z6}; for all type
and term variables x in Cy[S] and for z = y.

By condition 3 of PGEXT, wpg € Zpg is a term whose nonfunctional yellow subterms are
different fresh variables. Then wpg and yp(fy) are equal up to renaming of variables because
p replaces the nonfunctional yellow subterms of wpgfy by distinct fresh variables. Since
the purpose of this proof is to show that tpg is redundant, a property that is independent
of the variable names in tpg’s conclusion, we can assume without loss of generality that
wpa = yp(Ou) and Opg = q(0};). Then the given inference tpg and the constructed inference
g are of the form (xx) with C1[S1] = Cul[S], C) = Cuo<y> V uno diff(r,v)(uno,y) #
y diff (1, v)(uno,y), Sy = So, 01 =0}y, § = p, (=0, and 0 = {}.

CASE 2: ppg = pu.q for some nonempty ¢, uy is not a variable but is variable-headed, and
ugf is nonfunctional. Then we construct a FLUIDEXT inference.

Lemma 5.52 tells us that spq = spp(fy). Thus, the subterm of spg at position py is
upp(fr). So q is a green position of upp(fy), and the subterm at that position is upg—i.e.,

OPTIMISTIC LAMBDA-SUPERPOSITION 61

upp(fu) = (uap(fu))<upcyq. Let t = X (unp(fu))<{n>q, where n is the appropriate De
Bruijn index to refer to the initial .

We define 0}; = Ox[z — upcbpa,y — wpap, z — t0pc]. Then (z 2)0) = (t upg)bpg =
upp(On)bpc = uap(On)q(fu) = unbu = upby. So 6f is a unifier of z = and uy. Thus,
by definition of CSU (Definition 3.13), there exists a unifier 0 € CSU(z z = uy) and a
substitution ¢ such that zo¢ = x6}; for all relevant variables x (condition 4 of FLUIDEXT).

By the assumption of this case, uy is not a variable but is variable-headed (condition 1
of FLUIDEXT) and ug#f is nonfunctional (condition 2 of FLUIDEXT).

By condition 4 of PGEXT, upclpc # wpap. Thus, (z x)o¢ = (z 2)0 = (t upc)fpc =
(up(011))<upcbpcdg # (unp(Or))<wpapd, = (=)y = (= y)oC. So, (z2)o # (= y)o
(condition 5 of FLUIDEXT).

Since zo(= thpg and thpg # A0 because ¢ is nonempty, we have zo # A0 (condition 6
of FLUIDEXT).

By condition 3 of PGEXT, wpg € Tpg is a term whose nonfunctional yellow subterms
are different fresh variables. Then wpg and yp(6f;) are equal up to renaming of variables
because p replaces the nonfunctional yellow subterms of wpgp by distinct fresh variables.
As above, we can assume without loss of generality that yp(0};) = wpg and wp = wq(6};) for
all variables w in Cpg and in wpg, using the fact that p coincides with 6pg on all variables
in Cpg.

The inferences tpg and ¢y are of the form (x) with C1[Si] = Cul[S], C2[S2] =
(OH<Zy>PH v ':Edlﬂ:<a7/8>($7y) % ydlff<a,ﬂ>(:€,y)[[5]])a, th =0u,02=(, F= CPG<wPG>PPG v
upg diff (1, v)(upq, wpg) # wpg diff(1, v)(upg, wpa), & = p. In the following, we elaborate
why Cop(0y) = Em and xmq(fy) = z€ for some substitution 7 and all variables = in F,
as required for (). The reasoning is similar to that in the FLUIDSUP case. We invoke
Lemma 5.16 to obtain a substitution 7 such that op(¢) = p(c()m and q(c¢) = 7q(¢). Then

CQP(QZ) = (CH<Z y>pH vV dlff<0[, B>(SL‘, y) #’ Yy dlﬂ:<a’ ﬁ>($7 y))ap({)
= Cuop(Q)<(zy)op(Cpy V (2 diff(a, B)(x, y) % y diff(a, B)(x, y))op(C)

2 (Cuop(0)<(z 2)op(Q)<yop()>ep V (x diff (e, B)(,y) % y diff{ar,)z, 4))op(C)

2 (Crop(¢)<unop()<yop(C)>edp, V (@ diff(ar, B)(x. 1) # y diff (. B)(z,y))op(C)

D Cop(Q)<yop(Odpe V (@ diff(a, B)(z, y) # y diff (@, B)(, y))op(C)

& Cuop(C)<wparppe V (upg diff(T, v)(upg, wpa) # wee diff(1,v)(upa, wpa))T

= (Cup(c)<wpcoppg V upg diff (7, v)(upc, wpa) % wpe diff (1, v)(upg, wpg))™
= (Cpa<wpcoppe V upg diff (7, v)(upg, wpa) # wpg diff (1, v)(upg, wpe))T
=FEr

Step (1) can be justified as follows: By Lemma 5.12, zop(¢)q(¢) = tfpg. Since zop(¢) and ¢
contain only nonfunctional variables, zop(¢) must be a A-abstraction whose A binds exactly
one De Bruijn index, which is located at orange position 1. w.r.t. | gylong. Thus, (z z)op(¢)
and (z y)op(¢) are identical up to the subterm at green position ¢, which is zop({) and
yop(() respectively. So, (zy)op(C) = (2 z)ap(C)<yop({)>q-

For step (2), we use that (zx)o = ugo. For step (3), we use that uy is the green subterm
of C at position py. For step (4), we use that zop(¢) = zp(c{)m = zp(f)m = upgm and
similarly yop(¢) = wpgm.

62 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

PGDIirF: If tpg is a PGDIFF inference

PGDirr
u diff (7, v)(u, w) % u diff(T,v)(u,w) Vus~ws-Opg

then we use the following DIFF inference v:

DirF
y (diff(c, B)(y, 2)) # 2 (diff(, B)(y, 2)) Vyz = 2z 2

Cy

Let 0y be a grounding substitution with afy = 7, 80y = v, Yy = ubpg, and 20y = wlpg.
By condition 2 of PGDIFF, u,w, s € Ipg are terms whose nonfunctional yellow subterms are
different fresh variables. Then u and yp(fy) are equal up to renaming of variables because p
replaces the nonfunctional yellow subterms of ufpg by distinct fresh variables. The same
holds for w and zp(fy) and for s and xp(fy). Since the purpose of this proof is to show that
tpg is redundant, a property that is independent of the variable names in tpg’s conclusion,
we can assume without loss of generality that v = yp(6y), w = zp(fu), s = zp(fy), and
Opc = q(fn). Then Cyp(fuy) = Cpg and zpq(0u) = xobpg for all variables zp in Cpg. So
tpg and ¢y have the form (%) with C; = Cy, E = Cpg, £ = 0pg, m = {}, and 61 = 0y. [

5.5. Trust and Simple Redundancy. In this subsection, we define a notion of trust for
each level and connect them. Ultimately, we prove that simple redundancy (HRed¢,, HRedy)
as defined in Section 3.7 implies redundancy (HRedc, HRed;) as defined in Section 5.4.4.

5.5.1. First-Order Level. In this subsubsection, let > be an admissible term order for PFInf
(Definition 5.20).

Definition 5.54 (Trust). A closure C -6 € Cpr trusts a closure D - p € N C (Cpr if the
variables in D can be split into two sets X and Y such that

1. for every literal L € D containing a variable x € X, there exists a variable z in a literal
K € C such that xp is a subterm of 20 and Lp < K6; and
2. for all grounding substitutions p’ with zp’ = xp for all z € Y, we have D - p’ € N.

Lemma 5.55. Let R be a confluent term rewrite system oriented by > whose only Boolean
normal forms are T and L. If a closure C -0 € Cpr trusts a closure D -p € N C Cpr and
C' - 0 is variable-irreducible, then there exists a closure D - p' € irredr(N) with D -p' <D -p
such that RU{D - p'} Eox D - p.

Proof. Let X and Y the sets from Definition 5.54. We define a substitution p’ by yp' = yplr
for all variables y € Y and xp’ = xp for all variables z ¢ Y. By condition 2 of the definition
of trust, we have D - p’ € N. Moreover, D - p' < D - p by (O2)pr because R is oriented by .

We show that D - p’ is also variable-irreducible. If a variable y is in Y, then yp’ is reduced
w.r.t. R by definition of p’. If a variable z is in X, then consider an occurrence of x in a
literal L-p' € D - p’. We must show that xp’ = xp is irreducible w.r.t. the rules in R smaller
than L - p/. By condition 1, there exists a variable z in a literal K € C such that zp is a
subterm of zf and Lp < K. Since C - 6 and thus K - 0 is variable-irreducible w.r.t. R, 20 is
irreducible w.r.t. the rules in R smaller than K - 6. Since Lp’ < Lp < K6 and zp = xp’ is a
subterm of 26, this implies that xp’ is irreducible w.r.t. the rules in R smaller than L - p/.

For the Boolean condition of variable-irreducibility, we use that R’s only Boolean normal
forms are T and L.

OPTIMISTIC LAMBDA-SUPERPOSITION 63

To show that RU{D - p'} = D - p, it suffices to prove that zp —} xp’ for all z in D. If
x is in X then zp = zp’ and hence zp =7 xp’. Otherwise, z is in Y and zp’ = zplr and
thus zp =%, o']

5.5.2. Indexed Partly Substituted Ground Higher-Order Level. In this subsubsection, let >
be an admissible term order for IPGInf (Definition 5.21).

The definition of trust is almost identical to the corresponding definition on the PF
level. However, we need to take into account that PF level subterms correspond to yellow
subterms on the IPG level.

Definition 5.56 (Trust). A closure C -0 € (pg trusts a closure D - p € N C (pg if the
variables in D can be split into two sets X and Y such that

1. for every literal L € D containing a variable x € X, there exists a variable z in a literal
K € C such that zp is a yellow subterm of 26 and Lp < K#6; and
2. for all grounding substitutions p’ with zp’ = xzp for all z € Y, we have D - p’ € N.

Lemma 5.57. If a closure C -0 € Gpg trusts a closure D - p € N C (pg w.r.t. >, then
F(C-0) trusts F(D-p) € F(N) w.r.t. =g.

Proof. Assume C' - 0 trusts D - p. Thus, the variables of D can be split into two sets X and
Y such that conditions 1 and 2 of the definition of trust are satisfied. Note that the variables
of D and (D) coincide. We claim that F(C -) trusts (D - p) via the variable sets X
and Y.

Let F(L) € F(D) be a literal containing a variable x € X. Then L € D contains z as
well. By the definition of trust (Definition 5.56), there exists a variable z in some literal
K € C such that zp is a yellow subterm of 26 and Lp < K#6. It holds that (L) € (D) is a
literal containing x € X. Since xp is a yellow subterm of z6 we have that F (zp) is a subterm
of F(z0). Moreover, we have ¥ (Lp) =4 F(K6). Hence, condition 1 of Definition 5.54 is
satisfied.

It remains to show that also condition 2 of Definition 5.54 holds—i.e., that for any
grounding substitution p’ with xp’ = 2 (p) for all z € Y, we have F(D) - p' € F(N).
We define a substitution p” : x — F~1(p/(x)). Since F ! maps ground terms to ground
terms, p” is grounding. Moreover, since ¥ is bijective on ground terms, zp” = F~1(p/(x)) =
F~YxF(p)) = zp for all x € Y. By the definition of trust (Definition 5.56), D - p” € N and
therefore F(D)-p' = F(D - p") € F(N).]

Lemma 5.58. Let R be a confluent term rewrite system on ‘Ipr oriented by >=¢ whose
only Boolean normal forms are T and L. If a closure C -0 € (Gpg trusts a closure
D-p e N C Gpg and C-6 is variable-irreducible, then there exists a closure D-p’ € irredg(N)
with F(D - p') ¢ F(D - p) such that RU{F (D -p")} Eox F(D - p).

Proof. By Lemma 5.57, F(C - 0) trusts (D - p) € F(N). By Lemma 5.55, there exists
a closure Dy - p; € irredg(F(N)) = F(irredr(N)) with Dg - pjy <¢ F(D - p) such that
RUA{Dy - py} Eox F(D - p). Thus, there must exist a closure D - p' € irredr(N) with
F(D) <y F(D - p) such that RU{F(D - p)} fon F(D - p). O

64 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

5.5.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let > be an
admissible term order for PGInf (Definition 5.22).

As terms can also contain parameters we also need to account for this case in the
definition of trust for the PG level. Specifically, we must add a condition that the variables
in Y may not appear in parameters in the trusted closure.

Definition 5.59 (Trust). A closure C -0 € Cpg trusts a closure D - p € N C (pg if the
variables in D can be partitioned into two sets X and Y such that

1. for every literal L € D containing a variable x € X outside of parameters, there exists
a literal K € C containing a variable z outside of parameters such that zp is a yellow
subterm of z6 and Lp < K#; and

2. all variables in Y do not appear in parameters in D and for all grounding substitutions
p with zp' =zpforallz €Y, D -p' € N.

Lemma 5.60. If a closure C' -0 € Cpg trusts a closure D -p € N C Cpg w.r.t. >, then
J(C-0) trusts J(D - p) € J(N) w.r.t. >=.

Proof. Let C'-0 € Cpg and D - p € Cpg such that C'- 6 trusts D - p. Thus, the variables of D
can be partitioned into two sets X and Y such that conditions 1 and 2 of the definition of
trust are satisfied. Let X’ be the set X without the variables that only occur in parameters
in D. We claim that J(C - 0) trusts J(D - p) using the sets X’ and Y that split the variables
in 9(D - p).

Since the parameters disappear after the application of the transformation 7, the set
X'UY contains all variables occurring in J(D - p). As all the other variables are preserved
by J we have that X’ and Y are partition of the variables in 7(D - p).

Let 9,(L) € 3,(D) be a literal containing a variable z € X. Then L € D contains
xz € X' C X outside of parameters. By Defintion 5.59, there exists a literal K € C
containing a variable z outside of parameters such that xp is a yellow subterm of 20 and
Lp = K6. It holds that J,(K) € J,(D) is a literal containing € X. Since zp is a yellow
subterm of z6, we have that J(zp) is a yellow subterm of 7(z6), since J preserves yellow
subterms. Then, by Lemma 5.9, 7,(x)(p) is a yellow subterm of %(z)7(6). Moreover, we
have 9,(K)J(p) = J(Kp) =y (L) = J,(L)J(6) again using Lemma 5.9. Hence, condition 1
of Definition 5.56 is satisfied.

Let p' be a grounding substitution on the IPG level with zp’ = x7(p) for all x ¢ Y.
Since J(D - p) = 9,(D) - I(p), we must show that J,(D) - p’ € J(N). Since p’ is a grounding
substitution and 7 is a bijection on ground terms, there exists a substitution p” = 771(p’).
This substitution p” is grounding and zp” = 7= (zp') = 77 (J(xp)) = xpforallz ¢ Y.
Since C'- 6 trusts D - p, we have D - p"” € N and thus J,/(D)-I(p") = 9(D-p") € J(N). Since
the variables in Y do not occur in parameters in D, we have J,/(D) = J,(D). Moreover,
J(p") = p'. Hence, condition 2 of Definition 5.56 is satisfied.]

Lemma 5.61. Let R be a confluent term rewrite system on Tpp oriented by >4y whose
only Boolean normal forms are T and L. If a closure C -0 € Cpg trusts a closure D - p €
N C Cpg and C' -0 is variable-irreducible, then there exists a closure D - p' € irredg(N) with

FUID-p) 295 FI(D-p)) such that RULF(I(D - p'))} Fox F(I(D - p)).

Proof. By Lemma 5.60, 7(C - 0) trusts J(D - p) € J(N). By Lemma 5.58, there exists a
closure Dy - pj € irredr(J(N)) = J(irredr(N)) with F (Do - py) < F(JI(D - p)) such that
RU{F(Do-py)} Eor F(I(D-p)). Thus, there must exist a closure D - p’ € irredp(N) with
FID-p)) 2 FID-p)) such that RU{F(I(D - p'))} For F(I(D-p)). O

OPTIMISTIC LAMBDA-SUPERPOSITION 65

5.5.4. Full Higher-Order Level. In this subsubsection, let > be an admissible term order
(Definition 3.16), extended to be an admissible term order for PGInf as in Section 5.4.4.
We have defined trust for level H in Defintion 3.27.

Lemma 5.62. Let C[S] € Gi and D[T] € N C Cu. Let C8 € Gnd(C[S]) and Dp €
Gnd(D[T]). If the 0-instance of C[S] trusts the p-instance of D[T], then P(C - 0) trusts

P(D - p) € PG(N).

Proof. Let X and Y be a partition of the variables in D such that the variables in X fulfill
condition (i) and the variables in Y fulfill condition (ii). Let X’ be the set of variables
occurring in P(D - p) originating from zp(p) for some = € X. Define the set Y’ analogously.
We claim that P(C - 6) trusts P(D - p) using the sets X’ and Y’. It holds that X’ and Y’
are a partition of the variables in P(D - p).

REGARDING X’: We need to show that for every literal L’ € Dp(p) containing a variable
2’ € X’ outside of parameters, there exists a literal K’ € Cp(6) containing a variable 2’
outside of parameters such that 2'q(p) is a yellow subterm of 2'q(6) and L'q(p) < K'q(9).

Any literal L' € Dp(p) containing a variable 2’ € X’ outside of parameters must originate
from a literal L € D containing a variable x € X outside of parameters, where L' = Lp(p)
and 2’ occurs in zp(p). By condition (i) of Definition 3.27, this implies that there exists a
literal K € C and a substitution ¢ such that 26 = zop for all variables z in C' and L <X Ko.

By (010) with the substitution p(p), since 2’ occurs outside of parameters of L' =
Lp(p) = Lp(p), it also occurs outside of parameters of Kop(p).

By Lemma 5.16, there exists a substitution 7 such that op(p) = p(op)m and q(op) =
wq(p). So Kop(p) = Kp(op)m = Kp(f)m and =’ occurs outside of parameters in this literal.
Since Kp(#) contains only nonfunctional variables, there exists a variable 2z’ occurring outside
of parameters in Kp(f) such that 2’ is a yellow subterm of z’7w. Thus, z'q(p) is a yellow
subterm of 2'mq(p) = 2'q(op) = 2'q(#), which is what we needed to show.

REGARDING Y’: We must show that for all grounding substitutions p’ with zp’ = zq(p) for
all z €Y', we have Dp(p) - p' € PG(N).

Let p' be a substitution with zp" = xq(p) for all x € Y. Then, for all variables z € Y,
we have zp(p)p’ = 2q(p)q(p) = zp by Lemma 5.12. By condition (ii) of Definition 3.27, the
variables in Y do not appear in the constraints T' of D[T]. So, Tp(p)p’ = Tp and thus p(p)p’
is true. Therefore, D - p(p)p’ € G(N) and P(D - p(p)p’) € PG(N). By Lemma 5.13 and 5.14,
P(D-p(p)p') = Dp(p(p)p’) - a(p(p)p’) = Dp(p) - p’ because xp’ = xq(p) for all x ¢ Y and in
particular for all z not introduced by p(p). Therefore, Dp(p) - p' € PG(N).

A variable in yp(p) can occur in a parameter in P(D - p) only if the variable y occurs in
a parameter in D. Since all variables in Y do not appear in parameters, the variables in Y’
do not appear in parameters either.]

Lemma 5.63. Let R be a confluent term rewrite system on Tpg oriented by >=q5¢ whose
only Boolean normal forms are T and L. Let C[S] € Gi and D[T] € N C Cy. Let
CH € Gnd(C[S]) and Dp € Gnd(D[TY]). If the O0-instance of C[S] trusts the p-instance of
D|T] and C -6 is variable-irreducible, then there exists a closure D - p' € irredr(G(N)) with
FI(P(D -))) <y FIP(D - p))) such that RUAF(I((D - p))} For FI@D - p))).

Proof. By Lemma 5.62, 7(C - 0) trusts P(D - p) € PG(N). By Lemma 5.61, there exists
a closure Dy - p, € irredp(P(N)) = P(irredr(N)) with F(J(Do - py)) <97 F(I(P(D - p)))
such that RU {F(J(Do - p())} Forx F(I(P(D - p))). Thus, there must exist a closure

66 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

D - p" € irredg(N) with F(I(P(D - p'))) 235 F(I(P(D - p))) such that RU{F (J(P(D -
P)))} Eox FUI(P(D - p))). O

Lemma 5.64. Let N C (3. Then HRed(N) C HRedc(N).

Proof. Let C[S] € HRed(N). Let R be a confluent term rewrite system on 7p oriented
by =44 whose only Boolean normal forms are T and L. Let C’- 6’ € irredr(FIPG(C[S])),
i.e, there exists some C# € Gnd(C[S]) such that F92(C - 0) = C’ - ¢'. By Lemma 5.17,
F(Co) =C'0'.

We make a case distinction on which condition of Definition 3.28 applies to C0 €

Gnd(C[S]).

CONDITION 1: There exist an indexing set I and for each ¢ € I a ground instance D;p; of a
clause D;[T;] € N, such that

(a) F({Dipi | i €1}) Fox F(CO);

(b) for all i € I, D;p; < C6; and

(c) for all i € I, the f-instance of C[S] trusts the p;-instance of D;[T;].
We show that C[S] € HRedc(N) by condition 1 of Definition 5.46, i.e., we show that

RU {E € irredR(T]ng(N)) | E <45 0/91} }:0)\ 'y

By Lemma 5.63 and point (c) above, there exists a closure D} - p; € irredp(FJPG(N)) with
D! pl <95 F(I(P(D; - pi))) such that RU{D, - pl} =ox F(I(P(D; - pi))). By Lemma 5.17,
Dilpl <45 F(D;p;) and RU{D}p;} Eox F(Dipi). With point (a) above, it follows that

1
RU{Djp; | i € I} Fox F(CP)
It remains to show that D}p, <47 F(CO) for all i € I. Since D.p, <45 F(D;p;), it suffices

)

to show that F(D;p;) <590 F(CH). This follows from point (b) above, Lemma 5.17, and
Definitions 5.28 and 5.37.

CONDITION 2: There exists a ground instance Dp of some D[T] € N such that

(a) Dp =C9;

(b) C[S] o D[T7]; and

(c) the f-instance of C[S] trusts the p-instance of D[T].

By Lemma 5.63 and point (¢) above, there exists a closure D' - p’ € irredg(FIPG(N)) with
D" p' 2g5 F(I(P(D - p))) such that RULD"- p'} f=ox F(I(P(D - p))).
We distinguish two subcases.

Case 1: D'-p' = F(J(P(D-p))). Then we can show that C[S] € HRedc(N) by condition 2
of Definition 5.46, using points (a) and (b) above and Lemma 5.17.

CasE 2: D' - p' <490 F(I(P(D - p))). Then we show that C[S] € HRedc(N) by condition 1
of Definition 5.46—i.e.,

RU{E € irredgr(FIPG(N)) | E <435 C'0'} |or C'0/

Since C'0' = F(CO) = F(Dp) = TFIP(D - p) by point (a) above and Lemma 5.17, it suffices
to show

RU{FE € irredr(FIPG(N)) | E <950 FIP(D - p)} Eox FIP(D - p)
This follows directly from the three defining properties of D’ - p’ above. L]

Lemma 5.65. Let N C (. Then HRedi(N) C HRedi(N).

OPTIMISTIC LAMBDA-SUPERPOSITION 67

Proof. Let + € HRedi(N). Let C1[S1], ..., Cw[Sm] be its premises and Chyt1[Sm+1]
its conclusion. Let 6y,...,60,,4+1 be a tuple of substitutions for which ¢ is rooted in FiInf
(Definition 3.31). Since ¢ € HRed} (N), by Definition 3.32, there exists an indexing set I and
for each i € I a ground instance D;p; of a clause D;[T;] € N, such that

L. F({Dipi | i€ 1}) Forx F(Crmy10my1);
2. v is a DIFF inference or for all i € I, D;p; < Cp0y; and
3. for all i € I, the 0,,41-instance of Cyy41[Sm+1] trusts the p;-instance of D;[T;].

By Definition 5.47, we must show that for all confluent term rewrite systems R oriented
by >4¢ whose only Boolean normal forms are T and L such that Cy,41 - 041 is variable-
irreducible, we have

RUO Eox F(Cpt10m+1)

where O = irredg(FIPG(N)) if ¢ is a DIFF inference and O = {E € irredgr(FIPG(N)) |
E <439 F(Cpbpm)} otherwise.

By Lemma 5.63 and point 3 above, there exists a closure D} p} € irredg(FJPG(N)) with
Dl gl 2o F(I(P(D; - py))) such that RU{D.- pl} on F(I(P(D; - p,)). By Lemma 5.17,
Dlpl <45 F(D;p;) and RU{D;p.} Eox F(Dipi). With point 1 above, it follows that

RU {D;p; ‘ (&S I}):0)\ T<Cm+19m+1)

If ¢ is a DIFF inference, we are done. For the other inferences, it remains to show that
Dipl <450 F(Cmby,) for all i € I. Since Dip, <455 F(D;p;), it suffices to show that
F(Dipi) <99 F(Cpmby). This follows from point 2 above, Lemma 5.17, and Definitions 5.28
and 5.37. []

5.6. Model Construction. In this subsection, we construct models of saturated clause
sets, starting with a first-order model and lifting it through the levels. Using the results of
Section 5.4, we prove a completeness property for each of the calculi that roughly states the
following. For any saturated set N, that does not contain an empty closure, there exists a
term rewrite system R and a corresponding interpretation J such that J is a model of the
closures in N, that are variable-irreducible w.r.t. R.

Moreover, to prepare the eventual extension the model of the variable-irreducible
instances to all instances, for each level, we show a property that roughly states the following:
For any set of closures Ny that contains all closures of the form C' - p for all p whenever it
contains a closure C' - #, then the variable-irreducible instances of Ny entail all of Ny.

Finally, in level H, we bring everything together by showing that the constructed model
is also a model of the variable-irreducible ground instances of Ny and thus of Ny itself. It
follows that the calculus HInf is refutationally complete.

5.6.1. First-Order Levels. In this subsubsection, let > be an admissible term order for
PFInf (Definition 5.20), and let pfsel be a selection function on Cpp (Definition 5.18).

The completeness proof for PFInf relies on constructing a first-order term rewrite
system. For any first-order term rewrite system R, there exists a first-order interpretation,
which we also denote R, such that R =g, s ~ t if and only if s <7 t. Formally, this can be
implemented by a first-order interpretation whose universe for each type 7 consists of the
R-equivalence classes of ground terms of type 7.

68 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Definition 5.66 (Ry). Let N be a set of ground first-order closures with L ¢ T(N). By
well-founded induction, we define term rewrite systems R, and A, for all ground clauses and
ground terms e € 7p U (¢ and finally a term rewrite system Rpy. As our well-founded order
on Ty U (r, we employ our term and clause order >. To compare terms with clauses, we
define a term s to be larger than a clause C' if and only if s is larger than every term in C.
Formally, this can be defined using the clause order by Bachmair and Ganzinger [1, Sect. 2.4]
and encoding a term s as the multiset {{{s}}}.

(A1) LoGICAL BOOLEAN REWRITES: Given a term s, let Ag = {s — t} if
— (s,t) is one of the following:

(-L,T) (TAT,T) (TVT,T) (T=oTT (u~suT)

(-T,1) (TALL (TvlT) (Tol1l) (ua vl)withus#uv
(LAT,L) (LVT,T) L-oT.T) (w# ul)
(LAL 1) (Lvll) (L-oLT (us# v T) withu#v

— s is irreducible w.r.t. Ry.
(A2) BACKSTOP BOOLEAN REWRITES: Given a clause C, let A¢ = {s — L} if
—C=s~41;
S5 LT
— s is irreducible w.r.t. R¢.
(A3) FUNCTION REWRITES: Given a clause C, let A¢ = {F (u) — F(w)} if
— C = F(u) = F(w) for functional terms u and w;
= F(u) = F(w)
- F(u difF;’f) SR F(v diff;’f) for all s, t;
— F(u) is irreducible w.r.t. R¢.
(A4) PRODUCED REWRITES: Given a clause C, let A¢ = {s — t} if
(CC1) there exists a closure Cy - 0 € N such that C = Cyb;

(CC2) Cp - 0 is variable-irreducible w.r.t. R¢;
(CC3) C ="V s=~t for some clause C’ and terms s and t;
(CC4) s is nonfunctional;
(CC5) the root of s is not a logical symbol;
(CC6) if t is Boolean, then t =T
(CCT) s > t;
(CC8) s~ tis maximal in C,
(CC9) there are no selected literals in Cy - 6;
(CC10) s is irreducible by R¢;
(CC11) Rc¢ ol C

(CClQ) Rc U {8 — t} b&fol .
In this case, we say that Cp - 0 produces s — t and that Cy - 0 is productive.
(Ab) For all other terms and clauses e, Let A, =

Let Re = Uy, Af. Let Ry = A

e€TpUCr —€°
Lemma 5.67. The rewrite systems Rc and Ry do not have critical pairs and are oriented
by ~.

Proof. Tt is easy to check that all rules in Rc and Ry are oriented by >, using (O4)pp.
To show the absence of critical pairs, suppose that there exists a critical pair s — ¢ and
s’ = t' in Ry, originating from A, and A, respectively, for some e, ¢’ € Tp U (p. Without

OPTIMISTIC LAMBDA-SUPERPOSITION 69

loss, we assume e = ¢’. Inspecting the rules of Definition 5.66, it follows that s > s’. By the
subterm property (O3)pp, s cannot be a proper subterm of s’. So for the rules to be a critical
pair, s’ must be a subterm of s. But then s is not irreducible by A, C R., contradicting
the irreducibility conditions of Definition 5.66. L]

Lemma 5.68. The normal form of any ground Boolean term w.r.t. Ry is T or L.

Proof. Inspecting the rules of Definition 5.66, in particular (CC5), we see that T and L are
irreducible w.r.t. Ry.

It remains to show that any ground Boolean term s reduces to T or L. We prove the
claim by induction on s w.r.t. =. If s =T or s = L, we are done. Otherwise, consider the
rule (A2) for C = s ~ L. Either s is reducible by R¢c or (A2) triggers, making s reducible
by Ac. In both cases, s is reducible by Ry. Let s’ be the result of reducing s by Ry. By
Lemma 5.67, s = s’. By the induction hypothesis, s’ reduces to T or L. Therefore, s reduces
to T or L. L]

Lemma 5.69. For all ground clauses C, if Rc o1 C, then Ry o C.

Proof. We assume that Ro =g C. Then we have R¢ =g L for some literal L of C. It
suffices to show that Ry =g, L.

If L =t~1tis a positive literal, then ¢t <3} ¢'. Since Rc C Ry, this implies ¢ <33 ¢'.
Thus, RN ':fol L.

If L =t %t is a negative literal, then ¢ R t'. By Lemma 5.67, this means that ¢ and
t’ have different normal forms w.r.t. Ro. Without loss of generality, let ¢t = t/. Let s &~ s’ be
the maximal literal in C' with s = s’. We have s = t if s & s’ is positive and s = t if s &~ s’
is negative. Hence, inspecting Definition 5.66, we see that the left-hand sides of rules in
Uesc Ae are larger than t. Since only rules with a left-hand side smaller or equal to ¢ can
be involved in normalizing ¢ and #' and Rc U | o= Ae = Ry, it follows that ¢ and ¢’ have
different normal forms w.r.t. Ry. Therefore, ¢ %%N t" and Ry FEto1 L.]

Lemma 5.70. If a closure Coy = C{V so =ty -0 € Cor produces sof — tob, then Ry ol
Cih.

Proof. Let C = Cyf, C" = C{f, s = spf, and t = tpf. By (CCT7) and (CC8), all terms in
C are smaller or equal to s. By (CC12), we have Rc U {s — t} £ C’. The other rules
Ry \ (RcU{s — t}) do not play any role in the truth of C' because their left-hand sides are
greater than s, as we can see by inspecting the rules of Definition 5.66, in particular the
irreducibility conditions, and because Ry is confluent and terminating (Lemma 5.67). So,

Rc U {s = t} o C' implies Ry o C. L]
Lemma 5.71. If C' - 0 € Cpr is productive, then it is variable-irreducible w.r.t. Ry .

Proof. Let s — t be the rule produced by C - 6. By (CC2), C -6 is variable-irreducible
w.r.t. Ro. Let 8 =t € Ry \ Ro. Then s’ = t' € A, for some e € T U (¢ that is larger
than C0. So if e is a term, then s’ = ¢ = s and thus ' ~ ' = s ~ t. If e is a clause, then
its maximal literal (which is s’ &~ ' by (A2), (A3), and (CC8)) is at least as large as C’s
maximal literal (which is s & ¢ by (CC8)). So in either case, s’ ~t' = s ~ t. Since s ~ ¢ is
the maximal literal of C, s’ ~ t' is at least as large as each literal of Cf. So the rule s’ ~ t/
has no effect on the variable-irreducibility of C' - 8 by Definition 5.24. Therefore, C - 0 is
variable-irreducible w.r.t. Ry.]

70 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Lemma 5.72. Let u and w be higher-order ground terms of type 7 — v. If F (u) <% F(w),
then F (udiffy) <% F(wdiffl)) for all s,t.

Proof. By induction over each rewrite step in ¥ (u) <% F(w), it suffices to show the
following claim: If ¥ (u) =gy F(w), then F(udiffy)) <% F (wdiffyy) for all s,¢. Here, it
is crucial that s and ¢ are not necessarily equal to v and w.

If the rewrite position is in a proper subterm of ¥ (u), by definition of ¥, the rewrite
position corresponds to a proper yellow subterm of u. Yellow subterms of a functional term
remain when applying the term to an argument. So the same rewrite step can be applied to
obtain F (udiffyy) =g, F(w diff}).

For a rewrite in the root of the term, the rewrite rule must originate from (A3) because
the terms are functional. One of the conditions of (A3) then yields the claim.]

Lemma 5.73. Let u and w be higher-order ground terms of type T — v. If T(udiffg’f) Ry
F(wdiffgy) for all s,t, then F (u) <5 F(w).

Proof. Let F(u') = F(u) gy and F(w') = F(w) lgy. By applying Lemma 5.72 to
F(u) <, F(u') and to F(w') &5 F(w), we have F (v diff)) <5 F (w' diffyy)) for all
s, t.

We want to show that ¥ (u) <% F(w)—ie., that F(u) = F(v'). To derive a
contradiction, we assume that ¥ (u') # F(w’). Without loss of generality, we may assume
that ¥ (u') = F(w'). Then, using (O5)pp, all conditions of (A3) are satisfied for the rule
F(u') = F(w'), contradicting the fact that F (u') is a normal form.]

Lemma 5.74. Ry is a oy -interpretation.

Proof. We must prove all conditions listed in Section 3.7.

— By Lemma 5.68, the Boolean type has exactly two elements, namely the interpretations
of T and L. The rule (Al) ensures that the symbols =, A, V, =, &, %" are interpreted
as the corresponding logical operations. Note that R never contains any rules rewriting s
because s is smaller than any clause containing s. So s can be reducible w.r.t. Rs only
when one of its proper subterms is reducible. Since every term has a normal form, adding
rules only for the irreducible terms is sufficient.

— By Lemma 5.11, we have 7 (J(u) diffy) = F (u diff(7,v)(s, t)) for all u,s,t € Tground(Xn)-
Since 7 is a bijection on ground terms, Lemma 5.73 proves the extensionality condition in
Section 3.7.

— The argument congruence condition in Section 3.7 follows from Lemma 5.72 in the same
way. []

Lemma 5.75. If the premises of an inference are variable-irreducible w.r.t. a ground rewrite
system R with R C > and the inference is not a PFEXT or PFDIFF inference, then the
conclusion is also variable-irreducible w.r.t. R.

Proof. Let Cy - 8 be the conclusion of the inference. By Definition 5.24, we have to show
that for all literals L - 8 of Cy - 6§ and all variables x of L, x0 is is irreducible w.r.t. all rules
I — r € R with L8 > | = r and all Boolean subterms of z6 are either T or L. Since the
premises of the infererence are variable-irreducible, this is evident for all literals that occur
also in one of the premises. The Boolean subterm condition is satisfied for all inferences
because no inference other than PFEXT and PFDIFF introduces a variable that is not

OPTIMISTIC LAMBDA-SUPERPOSITION 71

present in the premises. It remains to check the the irreducibility condition for newly
introduced literals in Cj - 6.

For PFSUP inferences, the only newly introduced literal has the form L[t'] - §, where
L[u] - 0 is a literal of the second premise and (¢ & t') - 6 is a literal in the first premise with
t6 = ub and t0 > t'0. Let x be a variable in L[t']. If 2 occurs in ¢/, then 26 is irreducible
w.r.t. all rules | — r € R with t0 ~ t'0 = | ~ r since the first premise is variable-irreducible
w.r.t. R. On the other hand, xf must also be irreducible w.r.t. all rules [— r € R with
t0 ~ t'0 < | =~ r, since then | = t = t'0 = x0. Therefore, 20 is irreducible w.r.t. all rules
I = r € R. If z occurs in L[t'] but not in ¢, then it occurs in L[u], and because the second
premise is variable-irreducible w.r.t. R, x6 is irreducible w.r.t. all rules [— r € R with
L[u)® » 1 ~ r. Since L[t'|0 < L[u]f, x0 is also irreducible w.r.t. all rules | — r € R with
Lt~ 1=r.

For all other inferences, it is easy to verify that whenever a variable x occurs in a
newly introduced literal L - # in the conclusion, then x occurs also in a literal L' - 6 in
the premise with L0 < L'0, so the premise’s variable-irreducibility implies the conclusion’s
variable-irreducibility.]

We employ a variant of Bachmair and Ganzinger’s framework of reducing counter-
examples [2, Sect. 4.2]. Let N C Cpp with L & T(N). A closure Cy - 0 € Cpr is called
a counterezample if it is variable-irreducible w.r.t. Ry and Ry [~g1 Co - 6. An inference
reduces a counterexample Cj - 6 if its main premise is Cy - 0, its side premises are in N and
true in Ry, and its conclusion is a counterexample smaller than Cy - §. An inference system
has the reduction property for countereramples if for all N C (Cpr and all counterexamples
Cy -0 € N, there exists an inference from N that reduces Cy - 6.

Lemma 5.76. Let Cy-0 € N be a counterexample. Let Lgy be a literal in Cy -0 that is eligible
and negative or strictly eligible and positive. Let C' = Cy0 and L = Lof. We assume that
the larger side of L is reducible by a rule s — s’ € Ro. Then the inference system PFInf
reduces the counterexample Cy - 6.

Proof. Let p be the position of C that is located at the larger side of L and reducible by
s— 5.

First, we claim that p is not at or below a variable position of Cy and thus s = s for a
subterm sg of Cy that is not a variable.

To see this, assume for a contradiction that p is at or below a variable position of Cj,
i.e., there is a variable x in C such that s is a subterm of x6.

If s were Boolean, then s must be T or L by variable-irreducibility, contradicting the
fact that s — s’ € R¢ because Definition 5.66 does not produce rules rewriting T or L.

So s is not a Boolean term. Then, by the rules of Definition 5.66, s — s’ € R¢ implies
that C' = s =~ s’. By variable-irreducibility, since s is a subterm of 2, L < s ~ s’, where
L is the literal of C' containing position p. Since L contains s, it follows that L must be
positive and its larger side must be s. Since p is eligible and s is not a Boolean term, L must
be the maximal literal of C. So, since C'= s~ s’ and L < s ~ s, we have L = s ~ s'. But
this contradicts this lemma’s assumption that Ry o1 C.

This concludes the proof of our claim that s = s¢f for a subterm sg of Cy that is not a
variable.

If the subterm s at position p is not a green subterm of C, then it must be contained
in functional green subterm ¢ of C. Let ¢ be the position of ¢ in C. Since p is eligible in

72 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Co - 0, q is also eligible in Cp - 6. Let ' the normal form of ¢ w.r.t. Ry. Let u = F1(t)
and w = F~(#'). Then ¥ (u) <%, F(w). By Lemma 5.72, F (u diff;;}) <% F (w diff77).
Since t contains s, it is reducible w.r.t. Ry, and thus ¥ (u) =t = ¢ = ¥ (w). Thus, we
can apply PFEXT to reduce the counterexample. To fulfill the conditions of PFEXT on
w, we must replace the nonfunctional yellow subterms of w by fresh variables and choose p
accordingly. Given the above properties of Ry, the conclusion of this inference is equivalent
to the premise. It is also smaller than the premise by (O5)pp and because F(u) = F(w).
It remains to show that the conclusion is variable-irreducible. First, consider one of the
fresh variables introduced to replace the nonfunctional yellow subterms of w. Since yellow
subterms in w correspond to subterms in ¢/, and ¢’ is a normal form, xp is irreducible w.r.t.
Ry . Next, consider a variable x that occurs in a literal L - § in the conclusion but is not one
of the fresh variables. Then occurs also in a literal L’ -6 in the premise Cy -6 with L0 < L'6.
Since CY - 0 is variable-irreducible, this shows that the conclusion is variable-irreducible.

Otherwise, s is a green subterm of C. Then we make a case distinction on which case of
Definition 5.66 the rule s — s’ originates from:

— (A1) Then the root of s is a logical symbol and s ¢ {T,L}. By Lemma 5.68, Ry reduces
sto T or to L. By our claim above, sq is not a variable and since s = sg6, sg has a logical
symbol at its root.

— First consider the case where the position p in C is in a literal of the form s =~ T or
s~ 1. Then PFCLAUSIFY is applicable to Cy - # and the conclusion of this inference is
smaller than it. Moreover, the conclusion is equivalent to Cy - 8 by Lemma 5.74 and
variable-irreducible by Lemma 5.75 .

— Otherwise, we apply either PFBOOLHOIST (if sy reduces to L) or PFLooBHOIST (if
so reduces to T). In both cases, the conclusion of the inference is smaller than Cj - 6.
Moreover, the conclusion is equivalent to Cy - @ by Lemma 5.74 and variable-irreducible
by Lemma 5.75 .

— (A2) Then Ry reduces s to L and s ¢ {T,L}. Due to the presence of the rule s — L in
Re, C must be larger than s &~ L. So, since p is eligible in C, this position cannot be in a
literal of the form s ~ T. It cannot be in a literal of the form s &~ L either because s ~ L
is true in Ry. So we can apply PFBOOLHOIST to reduce the counterexample, again using
Lemma 5.74 and Lemma 5.75.

— (A3) Then s is functional and reducible w.r.t. Ry. Then we can proceed as in the PFEXT
case above, using s in the role of ¢.

— (A4) Then some closure Dy V t =~ t' - p with (Dg Vt~t)p= DV s~ s smaller than C
produces the rule s — s’. We claim that the counterexample C is reduced by the inference

DoVttt -p Cyolso>-0
Dy v Co<t'> - (pU)

PFSup

This superposition is a valid inference:

— tp =5 = s0p0.

— By our claim above, sq is not a variable.

— 5o is nonfunctional by (CC4).

— We have s > s’ by (CC7).

— DV s~ s < C[s] because D V s ~ s’ produces a rule in R¢.

— The position p of s in Cy - 0 is eligible by assumption of this lemma.

OPTIMISTIC LAMBDA-SUPERPOSITION 73

— The literal t ~ ¢’ is eligible in (Dg V t = t')- p by (CC8) and (CC9). It is strictly eligible
because if s & s’ also occurred as a literal in D, we would have Rpy s U{s — §'} o1 D,
in contradiction to (CC12).

— If t/p is Boolean, then t'p = T by (CC6).

As Dy V t = t'- pis productive, Ry [~ D by Lemma 5.70. Hence D Vv C'[s'] is

equivalent to C'[¢'], which is equivalent to C [s] w.r.t. Ry. Moreover, (Dy Vtat')-pis

variable-irreducible by Lemma 5.71. So D Vv C'[s'] is variable-irreducible by Lemma 5.75.

It remains to show that the new counterexample D V C'[¢] is strictly smaller than C.

Using (02)pr, C[s'] < C because s’ < s and D < C because D V s ~ s’ < C. Thus, the

inference reduces the counterexample C. L]

Lemma 5.77. The inference system PFInf has the reduction property for counterexamples.

Proof. Let Cy - 6 € N be a counterexample—i.e., a closure in irredg, (IV) that is false in
Rpy. We must show that there is an inference from N that reduces Cy - 4; i.e., the inference
has main premise Cj - 6, side premises in N that are true in Ry, and a conclusion that is a
smaller counterexample than Cy - 6. For all claims of a reducing inference in this proof, we
use Lemma 5.75 to show that the conclusion is variable-irreducible.

Let Lo be an eligible literal in Cj - 0. Let C' = Cyf). We proceed by a case distinction:

CASE 1: Lgf is of the form s % s'.

— Case 1.1: s =s'. Then PFEQRES reduces C.

— Case 1.2: s # s'. Without loss of generality, s > s’. Since Ry [~ C, we have R o C
by Lemma 5.69. Therefore, R¢o (o1 s # 8" and Re o1 s = s'. Thus, s must be reducible
by R¢ because s = s'. Therefore, we can apply Lemma 5.76.

CASE 2: Lgf is of the form s ~ s’. Since Ry ~g1 C, we can assume without loss of
generality that s = s'.

— Case 2.1: Ly is eligible, but not strictly eligible. Then Lg# occurs more than once in C.
So we can apply PFEQFACT to reduce the counterexample.

— Case 2.2: Ly is strictly eligible and s is reducible by Rc. Then we apply Lemma 5.76.

— Case 2.3: L is strictly eligible and s = L. Then, since s > s, we have s’ =T by (O4)pp.
So, PFFALSEELIM reduces the counterexample.

— Case 2.4: Ly is strictly eligible and s is functional. Then we apply PFARGCONG to
reduce the counterexample. The conclusion is smaller than the premise by (O5)pr. By
Lemma 5.73, there must be at least one choice of © and w in the PFARGCONG rule such
that the conclusion is a counterexample.

— Case 2.5: Ly is strictly eligible and s # L is nonfunctional and not reducible by Rc. Since
Ry ol C, Cp - 0 cannot be productive. So at least one of the conditions of (A4) of
Definition 5.66 is violated. (CC1), (CC2), (CC3), (CC4), (CCT), (CC10), and (CC11) are
clearly satisfied.

For (CC5), (CC6), (CC8), and (CC9), we argue as follows:

— (CC5): If s were headed by a logical symbol, then one of the cases of (Al) applies.
The condition in (A1) that any Boolean arguments of s must be T or L is fulfilled by
Lemma 5.68 and the fact that the rules applicable to subterms of s in Ry are already
contained in Ry. So (Al) adds a rewrite rule for s to R¢, contradicting irreducibility
of s.

— (CC6): If s" were a Boolean other than T, since s = s’, we would have s # T, L by
(O4)pp. Moreover, s’ = L, and thus C > s &~ L. Since s is not reducible by R¢, is is

74 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

also irreducible by R__ | C Rc. So (A2) triggers and sets A__| = {s — L}. Since
s is not reducible by R¢, we must have C' = s ~ 1. But then C istrue in Ry, a
contradiction.
— (CC8): By (CC6), Ly cannot be selected and thus eligibility implies maximality.
— (CC9): By (CC6), Lo cannot be selected. If another literal was selected, Ly would not
be eligible.
So (CC12) must be violated. Then Rc U {s — s’} g C’, where C’ is the subclause
of C' with Lo# removed. However, Rc [~ C, and therefore, Ro g C'. Thus, we
must have C' = C” V r ~ t for some terms r and ¢, where Rc U{s — §'} Eq1 7 =~ ¢
and R¢ g r = t. So r # t and without loss of generality we assume r > t. Moreover
s — & must participate in the normalization of r or t by Rc U{s — s'}. Since s =~ ¢ is
maximal in C' by (CC8), r < s. So the rule s — s’ can be used only as the first step in
the normalization of r. Hence r = s and R¢ =g 8’ & t. Then PFEQFACT reduces the
counterexample.]

Using Lemma 5.77 and the same ideas as for Theorem 4.9 of Bachmair and Ganzinger’s
framework [2], we obtain the following theorem:

Theorem 5.78. Let N be a set of closures that is saturated up to redundancy w.r.t. PFInf
and PFRedy, and N does not contain L -6 for any 6. Then Ry [=oy irredg, (N).

Proof. By Lemma 5.74, it suffices to show that Ry |=fo irredg, (V). For a proof by contra-
diction, we assume that Ry Ffo) itredp, (V). Then N contains a minimal counterexample,
i.e., a closure Cp - 0 that is variable-irreducible w.r.t. Ry with Ry (£t Co - 0. Since PFInf
has the reduction property for counterexamples by Lemma 5.77, there exists an inference that
reduces Cj - 0—i.e., an inference ¢ with main premise Cj - 0, side premises in N that are true
in Ry, and a conclusion concl(t) that is smaller than Cy - 6, variable-irreducible w.r.t. Ry,
and false in Ry. By saturation up to redundancy, ¢ € PFRed;. By Definition 5.26, we have
Ry U{E € irredr, (N) | E < Cy- 0} Eox concl(r). By minimality of the counterexample
Co - 0, the closures {E € irredr, (V) | E < Cy - 0} must be true in Ry, and it follows that
concl(t) is true in Ry, a contradiction. []

Lemma 5.79. Let R be a confluent term rewrite system oriented by >~ whose only Boolean
normal forms are T and L. Let N C Cpr such that for every C -0 € N and every grounding
substitution p that coincides with 6 on all variables not occurring in C, we have C' - p € N.

Then RUirredgr(N) =ox N.

Proof. Let C-6 € N. We must show that RUirredg(NN) f=ox C - 0. We define a substitution
0" by 20’ = (x0)| R for variables x occurring in C' and z6" = z6 for all other variables. Then
RU{C-0'} Eox C - 0. Moreover, ¢ is grounding and coincides with € on all variables not
occurring in C. By the assumption of this lemma, we have C -0’ € N. Finally, we observe
that the closure C - ¢’ is variable-irreducible w.r.t. R—i.e., C' - ¢’ € irredr(N). It follows
that RUirredr(N) [=ox C - 6. []

5.6.2. Indexed Partly Substituted Ground Higher-Order Level.

In this subsubsection, let > be an admissible term order for IPGInf (Definition 5.21),
let ipgsel be a selection function on Gpg, and let N C (pg such that N is saturated up to
redundancy w.r.t. IPGInf and 1 -0 € N for all §. We write R for the term rewrite system

OPTIMISTIC LAMBDA-SUPERPOSITION 75

Ry () constructed in the previous subsubsection w.r.t. =g and ¥ (ipgsel). We write t ~ s
for F(t) <% F(s), where t, s € Toround (X1)-

Our goal in this subsubsection is to use R to define a higher-order interpretation that is
a model of N. To obtain a valid higher-order interpretation, we need to show that s ~ s’
whenever 26 ~ z6' for all z in s.

Lemma 5.80 (Argument congruence). Let s ~ s’ fors, s’ € Tgound(21). Let u € Tground (Z1)-
Then su ~ s' u.

Proof. Let t,t',v be terms and 6 a grounding substitution such that t0 = s, t'0 = s', v0 = u,
and the nonfunctional yellow subterms of ¢,t’, v are different variables. Let p the substitution
resulting from R-normalizing all values of 6 (via F). Then there exists the inference

IPGDIFF

T,V ! 16T,V ~ 4/
tdlfftp,t,p¢t d'fftp,t'p\/t“”t vep

which we call . By construction of p, its conclusion is variable-irreducible.

Since N is saturated, ¢ is redundant and thus R U ¥ (irredr(N)) = F (concl(e)). Hence
R = F(concl(r)) by Theorem 5.78 and Lemma 5.36.

We have tp ~ t0 = s ~ s =t ~ t'p. By Lemma 5.72, R = F(tp diff;ft,p) 2
F(¢'pdiff;",). Using Lemma 5.5, it follows that R = F((tv ~ t'v)p). Since applying
a functional term to an argument preserves nonfunctional yellow subterms of both the
functional term and its argument, we have su = (tv)f ~ (tv)p and s' u = (t' v)8 ~ (t' v)p.

So RE F(su~ s u) and thus su ~ s u. [

The following lemma and its proof are essentially identical to Lemma 54 of Bentkamp et
al. [6]. We have adapted the proof to use De Bruijn indices, and we have removed the notion
of term-ground and replaced it by preprocessing term variables, which arguably would have
been more elegant in the original proof as well.

Lemma 5.81. Let s € T(X;), and let 0, §' be grounding substitutions such that x6 ~ 26’
for all variables x and o = af’ for all type variables ov. Then s ~ s6’.

Proof. In this proof, we work directly on A-terms. To prove the lemma, it suffices to prove it
for any A-term s € T*(X;). Here, for t1,t5 € ‘Z:g/l\found(EI), the notation ¢; ~ t2 is to be read
as t1lg ~ t2] because ¥ is defined only on S-normal A\-terms.

Without loss of generality, we may assume that s contains no type variables. If s does
contain type variables, we can instead use the term sy resulting from instantiating each
type variable « in s with «af. If the result holds for the term sy, which does not contain
type variables, then sgf ~ sof’, and thus the result also holds for s because sf = sy and

s0' = sp0’.

DEFINITION We extend the syntax of A-terms with a new polymorphic function symbol
@ : MNa. a - a — a. We will omit its type argument. It is equipped with two reduction
rules: ®ts —tand Bts— s. A fH-reduction step is either a rewrite step following one of
these rules or a g-reduction step.

The computability path order >cpo [12] guarantees that

— @ ts >cpo s by applying rule Qr>;
— @ ts >=cpot by applying rule Q> twice;
— (At) s =cpo t{0 — s} by applying rule @Qg.

76 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

Since this order is moreover monotone, it decreases with S@®-reduction steps. The order is
also well founded; thus, 8&-reductions terminate. And since the S&-reduction steps describe
a finitely branching term rewriting system, by Kénig’s lemma [21], there exists a maximal
number of S@-reduction steps from each A-term.

DEFINITION We introduce an auxiliary function 8 that essentially measures the size of a
A-term but assigns a size of 1 to ground A-terms.

1 if s is ground or if s is a variable
8(s) =q1+38(t) if s is not ground and has the form A ¢
8(t) + 8(u) if s is not ground and has the form ¢ u

We prove sf ~ sf’ by well-founded induction on s, 6, and ¢ using the left-to-right
lexicographic order on the triple (n1(s),n2(s),n3(s)) € N*, where
— n1(s) is the maximal number of g®-reduction steps starting from so, where o is the
substitution mapping each variable z to @ z6 x0’;
— ng(s) is the number of variables occurring more than once in s;

— n3(s) = 8(s).
CASE 1: The A-term s is ground. Then the lemma is trivial.

CASE 2: The A-term s contains k > 2 variables. Then we can apply the induction hypothesis
twice and use the transitivity of ~ as follows. Let x be one of the variables in s. Let
p = {x — 20} the substitution that maps = to x and ignores all other variables. Let
p =0z xl].

We want to invoke the induction hypothesis on sp and sp’. This is justified because so
@-reduces to spo and to sp’o, for o as given in the definition of ny. These @-reductions have
at least one step because x occurs in s and k > 2. Hence, ny(s) > ni(sp) and ni(s) > nq(sp’).

This application of the induction hypothesis gives us spf ~ spf’ and sp'6 ~ sp'6’. Since
spf = s6 and sp'60’ = sb', this is equivalent to sf ~ spf’ and sp’0 ~ sf’. Since moreover
spb’ = sp'0, we have s6 ~ s’ by transitivity of ~. The following illustration visualizes the
above argument:

YAVIRVAN'

/ / ~ /
s6 ~ spd = sp'6 s6

IH

CASE 3: The A-term s contains a variable that occurs more than once. Then we rename
variable occurrences apart by replacing each occurrence of each variable x by a fresh variable
x;, for which we define x;0 = 26 and x;0/ = x6’. Let s’ be the resulting A-term. Since
so = §'o for o as given in the definition of ny, we have ni(s) = ny(s’). All variables
occur only once in s’. Hence, na(s) > 0 = ny(s’). Therefore, we can invoke the induction
hypothesis on s’ to obtain s'6 ~ s'¢’. Since s6 = s'0 and s#' = s'¢’, it follows that s6 ~ s6'.

CASE 4: The A-term s contains only one variable x, which occurs exactly once.

CASE 4.1: The A-term s is of the form f(7) ¢ for some symbol f, some types 7, and some
A-terms ¢. Then let u be the M\-term in ¢ that contains z. We want to apply the induction
hypothesis to u, which can be justified as follows. For ¢ as given in the definition of n,
consider the longest sequence of f®-reductions from uo. This sequence can be replicated
inside so = (f(7)t)o. Therefore, the longest sequence of S®-reductions from so is at least

OPTIMISTIC LAMBDA-SUPERPOSITION 7

as long—i.e., n1(s) > ni(u). Since both s and u have only one variable occurrence, we have
na(s) = 0 = na(u). But ng(s) > n3(u) because u is a nonground subterm of s.

Applying the induction hypothesis gives us uf ~ uf’. By definition of F, we have
F(F(F) 1)) = T F(t0) and analogously for ', where m is the length of . By congruence of
~ in first-order logic, it follows that s ~ sf’.

CASE 4.2: The A-term s is of the form z ¢ for some A-terms ¢. Then we observe that, by
assumption, x6 ~ x6’. Since x occurs only once, t are ground. Then 20t ~ z6’ t by applying
Lemma 5.80 repeatedly. Hence s = x6t and s = x6' t, and it follows that sf ~ s@'.

CASE 4.3: The A-term s is of the form A u for some A-term u. Then we observe that to
prove sf ~ s, by Lemma 5.73, it suffices to show that s diffsg 590 ~ 56’ diffsg s9r. Via
[-conversion, this is equivalent to v0 ~ v8’, where v = u{0 > diffs9 59 }. To prove vf ~ vf’,
we apply the induction hypothesis on v.

It remains to show that the induction hypothesis applies on v. For ¢ as given in the
definition of ni, consider the longest sequence of S@-reductions from vo. Since diffgg 4o/ is
not a A-abstraction, substituting it for 0 will not cause additional S&-reductions. Hence,
the same sequence of f@-reductions can be applied inside so = (A u)o, proving that
n1(s) > ni(v). Since both s and v have only one variable occurrence, ns(s) = 0 = na(v).
But n3(s) = 8(s) = 1+ 8(u) because s is nonground. Moreover, 8(u) = §(v) = ns(v). Hence,
n3(s) > ng(v), which justifies the application of the induction hypothesis.

CASE 4.4: The A-term s is of the form (A w) tg t for some A\-terms u, tg, and . We apply
the induction hypothesis on s’ = {0 — to} ¢, justified as follows. For o as given in the
definition of nq, consider the longest sequence of B®-reductions from s’o. Prepending the
reduction so —3 s'o to it gives us a longer sequence from so. Hence, ni(s) > ni(s’). The

induction hypothesis gives us s'6 ~ s’#’. Since ~ is invariant under S-reductions, it follows
that s ~ s6'. L]

Using the term rewrite system R, we define a higher-order interpretation JT¢ =
(UIP G,HgG,HIPG,LIPG). The construction proceeds as in the completeness proof of the
original A-superposition calculus [6]. Let (U, J) = R; i.e., U, is the universe for the first-order
type 7, and J is the interpretation function. Since the higher-order and first-order type
signatures are identical, we can identify ground higher-order and first-order types. We will
define a domain D, for each ground type 7 and then let UPG be the set of all these domains
D.. We cannot identify the domains D, with the first-order domains U, because domains
D, for functional types 7 must contain functions. Instead, we will define suitable domains
D. and a bijection &, between U, and D, for each ground type 7.

We define € and D, in mutual recursion. To ensure well definedness, we must show that
& is bijective. We start with nonfunctional types 7: Let D, =U,, and let &, : U, — D,
be the identity. Clearly, the identity is bijective. For functional types, we define

Dro={0:Dr =Dy |Ts:T7—=v.Vu:7. o(E([F(w)]r)) = Eu ([F(sw)]r)}
Ermw t Urssy = Dy

Ermu([F(9)]R) (€ ([F (W)]R)) = Eu([F (s W)]R)

To verify that this equation is a valid definition of €,_,,, we must show that

— every element of U,_,, is of the form [(s)] for some s € Tground(X1);
— every element of D is of the form &, ([F (u)]y) for some u € Tground (X1);

78 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

— the definition does not depend on the choice of such s and u; and
— & ([F(9)]R) € Dreyy for all s € Tground (X1)-

The first claim holds because R is term-generated and ¥ is a bijection. The second
claim holds because R is term-generated and F and &, are bijections. To prove the third
claim, we assume that there are other terms t € Zground(X1) and v € Tgrouna(X1) such
that [F(s)]z = [F ()] and &7 ([F(uw)]z) = &+ ([F (v)]g). Since E; is bijective, we have
[F(u)]p = [F ()] z—ie., u~wv. The terms s,t,u,v are in Tground(X1), allowing us to apply
Lemma 5.81 to the term z y and the substitutions {x +— s, y — u} and {x — t, y — v}.
Thus, we obtain s u ~ tv—i.e., [F(su)]p = [F(t v)]—indicating that the definition of
&+, above does not depend on the choice of s and u. The fourth claim is obvious from the
definition of D,_,,, and the third claim.

It remains to show that £,_,, is bijective. For injectivity, we fix two terms s,t €
Tground (X1) such that for all u € Zground(X1), we have [F (s u)]p = [F (t u)] 5. By Lemma 5.73,
it follows that [F(s)]p = [(t)], which shows that €,_,, is injective. For surjectivity,
we fix an element ¢ € D,_,,. By definition of D,_,,, there exists a term s such that
0 (E-([F(w)]g)) = Eu ([F(su)]p) for all u. Hence, €+, ([F (s)]z) = ¥, proving surjectiv-
ity and therefore bijectivity of €,_,,. Below, we will usually write £ instead of £, since the
type 7 is determined by &;’s first argument.

We define the higher-order universe as UYS = {D. | 7 ground}. In particular, by
Lemma 5.74, this implies that D, = {0,1} € U'C as needed, where 0 is identified with [L]
and 1 with [T]. Moreover, we define Ji; G(K)(Dz) = Dy(s) for all k € By, completing the
type interpretation of Jg,)G = (UPG, Hg)G) and ensuring that Hg)G(o) =D, =1{0,1}.

We define the interpretation function J'¢ for symbols f : Ma,,. 7 by JTE(f, Dy,) =
E(LF (F(om)]).

We must show that this definition indeed fulfills the requirements of an interpretation
function. By definition, we have (I1) PG (T) = &([T]z) = [T]z =1 and (12) JFC(L) =

E([L]r) =[L]g =0.
Let a,b € {0,1}, ug = L, and uy = T. Then, by Lemma 5.74,

MR LF (wa)l g, [F ()])

uq Aup)]) = min{a, b}

(13) 3" (A)(a,b) =

uq V up)] p) = max{a,b}

)]) ([F (wa)]R)
)| g) = [F(-ua)]p=1-a
(16) "4 (=)(a,b) = E([F (ua = wp)]) = max{l —a,b}
(I7) Let D, € UPC and o/, € D,. Since & is bijective and R is term-generated, there
exist ground terms u and v such that E([F (u)]z) = o’ and E([F (v)]g) =V'. Then

g (m, D7) (', V) = E(IF (R(T)]) (E(LF (W]R), E(IF (0)]R)) = E(LF (um(7))])
which is 1 if ’ = ¥’ and 0 otherwise by Lemma 5.74. (I8) Similarly J'F¢ (¢, D,)(a’, ') = 0 if
a’ = b and 1 otherwise. This concludes the proof that JPG is an interpretation function.

Finally, we need to define the designation function LG, which takes a valuation & and
a A-expression as arguments. Given a valuation £, we choose a grounding substitution 6
such that Dy = &y (o) and E([F (20)]) = &e(x) for all type variables a and all variables
x. Such a substitution can be constructed as follows: We can fulfill the first equation in a
unique way because there is a one-to-one correspondence between ground types and domains.

(1) %)) =

NN N S
e = e
A~ N S

3
€
(14) J4(V)(a,b) =€
3
3
3

OPTIMISTIC LAMBDA-SUPERPOSITION 79

Since €71 (&e(z)) is an element of a first-order universe and R is term-generated, there
exists a ground term s such that [[s]]% = &7 !(&we(x)). Choosing one such s and defining
z0 = F~1(s) gives us a grounding substitution § with the desired property.

Let LIPG (¢, 0t) = E([F (A t)0)]z). We need to show that our definition does not depend
on the choice of . We assume that there exists another substitution 6’ with the properties
Dagr = &ry(a) for all o and E([F (0')]g) = &te(x) for all 2. Then we have af = ab’ for
all a due to the one-to-one correspondence between domains and ground types. We have
[F(x0)]p = [F(20')]g for all x because € is injective. By Lemma 5.81 it follows that
[F(A)O] = [F((At)8)] 5, which proves that LG is well defined. This concludes the

definition of the interpretation J'FG = (UIPG,H{}? G gPG £IPG) Tt remains to show that

JPG is proper.

The higher-order interpretation JFG

relates to the first-order interpretation R as follows:

Lemma 5.82. Given a ground \-term t € T\ (1), we have

ground
[tlyee = E([F (tLs)1R)

Proof. The proof is adapted from the proof of Lemma 40 in Bentkamp et al. [8]. We proceed
by induction on t. If ¢ is of the form f(7), then

[[tHJIPG = QIPG (f7 DT’)
= e([F(F(T)]r) = E(LF(tLp)lR)

If ¢ is an application t = t; to, where ¢ is of type 7 — v, then
[t1 ta]iee = [t1]gec ([t2]yirc)
B e ([F () r) (E- ([F(t24p)])
PLE e ([F((t t2) Lp)])

If t is a A-expression, then

[A ullfive = £ A w)
= &([F(Aw)0ip)lr)
= &([F((Au)ip)lr)
where 6 is a substitution as required by the definition of £FC. []

We need to show that the interpretation J''G is proper. In the proof, we will need the
following lemma, which is very similar to the substitution lemma (Lemma 4.1), but we must
prove it here for our particular interpretation 7FS because we have not shown that JFGC is
proper yet.

Lemma 5.83. Let p be a grounding substitution, t be a A-term, and & be a valuation.
Moreover, we define a valuation §' by &, (o) = [ap]spe for all type variables v and & (x) =
[[xp]]glpg for all term variables x. We then have

[[tp]]glpc = [[tﬂglpc

Proof. The proof is adapted from the proof of Lemma 41 in Bentkamp et al. [8]. We proceed
by induction on the structure of 7 and ¢. The proof is identical to that of Lemma 4.1, except
for the last case, which uses properness of the interpretation, a property we cannot assume

80 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

here. However, here, we have the assumption that p is a grounding substitution. Therefore,
if t is a A-expression, we argue as follows:

[(A U)PEIPG = [A upﬂglPG
= LS Nup) by the definition of the term denotation
= E([F((Nu)pdls)]R) for some 6 by the definition of £F¢
= E([F(Nu)plp)lr) because (A u)p is ground
= LG Nu) by the definition of £P¢ and Lemma 5.82
=[A u]]gipc by the definition of the term denotation
The step labeled with * is justified as follows: We have £LF¢(¢/, A u) = E([F((Aw)0' L15)])
by the definition of LG, if ¢’ is a substitution such that Dag = {y(a) for all @ and

E([F(x0'Lp)]) = &te(w) for all x. By the definition of ¢’ and by Lemma 5.82, p is such a
substitution. Hence, LG (¢, A u) = E([F((Au)pls)]g)- []

Lemma 5.84. The interpretation G is proper.
Proof. We need to show that [A t]]gfliy(’fte)(a) = [[t{0— x}ﬂgfgé&e[xHa]), where z is a fresh
variable.

A t]]gf;yé&e)(a) = LG ((&y, &e), A) (a) by the definition of term denotation

=E([F((A)01p)]R)(a) by the definition of L'PG for some 6
such that E([F(20)]) = &e(2) for
all z and Dyp = &y () for all

= E([FU((A)0s)Lp)R) by the definition of &
where E([F (s)]p) = a

= E([F (t{0 = x}(O[z + s])I3)]z) by B-reduction
where z is fresh

= [t{0 = 2} (0[z = 5])]rc by Lemma 5.82
=[t{0— =z (fgé&e[m”“]) by Lemma 5.83
[t{ s

[

Lemma 5.85. JPG is term-generated; i.e., for all D € UYC and all a € D, there exists a
ground type T such that [T pc =D and a ground term t such that [t] e = a.
ty

Proof. In the construction above, it is clear that there is a one-to-one correspondence between
ground types and domains, which yields a suitable ground type 7.

Since R is term-generated, there must be a ground term s € Zpp such that [s], = £7(a).
Let t = F~!(s). Then, by Lemma 5.82, [t],pe = E([s]z) = a- []

Lemma 5.86. Given C -0 € (Cipc, we have I¥G |= C -0 if and only if R = F(C - 0).
Proof. By Lemma 5.82, we have

[t]gre = E([F (t4p)]R)
for any t € Tground(21). Since € is a bijection, it follows that a ground literal sf ~ tf in a

clause C - 0 € Gpg is true in JPC if and only if #(s6 ~ t6) is true in R. So any closure
C -0 € Gpg is true in PG if and only if F(C-0) is true in R. OJ

OPTIMISTIC LAMBDA-SUPERPOSITION 81

Theorem 5.87. Let N C (Gpg be saturated up to redundancy w.r.t. IPGRed;, and N does
not contain a closure of the form L -0 for any 0. Then ITC = irredg(N), where R = Ry (ny-

Proof. By Lemma 5.86, it suffices to show that R is a model of irredg(F (N)). We apply
Theorem 5.78. Lemma 5.36 shows the condition of saturation up to redundancy. L]

Lemma 5.88. Let R be a confluent term rewrite system on ‘Ipg oriented by > whose only
Boolean normal forms are T and L. Let N C (pg such that for every C -0 € N and every
grounding substitution p that coincides with 8 on all variables not occurring in C, we have
C-peN. Then RU ¥F (irredr(N)) Eox F(N).

Proof. We apply Lemma 5.79. The required condition on ¥ (NN) can be derived from this
lemma’s condition on N and the fact that is a bijection (Lemma 5.4).]

5.6.3. Partly Substituted Ground Higher-Order Level. In this subsubsection, let > be an
admissible term order for PGInf (Definition 5.22), and let pgsel be a selection function on
Cpi (Definition 5.18).

It is inconvenient to construct a model of Ny for the PG level because J converts param-
eters into subscripts. For example, in the model constructed in the previous subsubsection,
it can happen that a ~ b holds, but f; ~ f,, does not hold, where a and b are constants and
fa and f, are constants originating from a constant f with a parameter. For this reason, our
completeness result for the PG level only constructs a model of irredr(J(N)) C (ipg instead
of irredr(N) C Cpg. We will overcome this flaw when we lift the result to the H level where
the initial clause set can be assumed not to contain any constants with parameters.

Theorem 5.89. Let N C (Cpg be saturated up to redundancy w.r.t. PGRed1, and N does
not contain a closure of the form L -6 for any 0. Then J'YC = J(irredg(N)), where

R =Ry
Proof. This follows from Theorem 5.87 and Lemma 5.43. []

Lemma 5.90. Let R be a confluent term rewrite system on Tpp oriented by >=q5¢ whose
only Boolean normal forms are T and L. Let N C Cpg be a clause set without parameters
such that for every C'-0 € N and every grounding substitution p that coincides with 8 on all
variables not occurring in C, we have C - p € N. Then RU F (J(irredg(N))) Fox F(J(N)).

Proof. We apply Lemma 5.88. The required condition on J(N) can be derived from this
lemma’s condition on N as follows. We must show that for every C'- 0 € J(N) and every
grounding substitution p that coincides with 6 on all variables not occurring in C, we have
C-p € J(N). The closure C-6 € J(N) must be of the form 7(C’"-60") with C'-6' € N. Define
o' as xp' = 71 (xp) for all x. By this lemma’s condition on N, it follows that C’ - p’ € N.
and thus C'-p = J(C"-p') € J(N). Here, it is crucial that N does not contain parameters
because only this guarantees that C' = Jy(C') = J,(C").]

82 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

5.6.4. Full Higher-Order Level. In this subsubsection, let > be an admissible term order
(Definition 3.16), extended to be an admissible term order for PGInf as in Section 5.4.4,
and let hsel be a selection function (Definition 3.18).

Definition 5.91. A derivation is a finite or infinite sequence of sets (IV;)i>o such that
N; \ Nit+1 € HRedc(N;41) for all i. A derivation is called fair if all HInf-inferences from
clauses in J; [);»; IV; are contained in J; HRed1(N;).

Lemma 5.92. The redundancy criteria HRedc and HRedy fulfill the following properties,
as stated by Waldmann et al. [33]:
(R2) if N C N', then HRedc(N) C HRedc(N') and HRed;(N) C HRedi(N');
(R3) if N’ C HRedc(N), then HRedc(N) C HRedc(N\N') and HRed;(N) C HRedi(N\N');
(R4) if v € HInf and concl(t) € N, then v € HRedI(N).

Proof. (R2): This is obvious by definition of clause and inference redundancy.
(R3) for clauses:
Define » as a relation on sets of closures C' - 8, where C' € (g as

C-0w D-p ift CO> Dpor (CO=DpandC D)

Clearly, for all C € G and all N C (1, we have C € HRedc(N) if and only if for all
confluent term rewrite systems R on Tr oriented by > whose only Boolean normal forms
are T and L and all C -6 € irredr(G(C)), we have

RU{F(EQ) | E-(€irredg(G(N)) and E - 4 C -0} =ox F(CO)

Now we are ready to prove (R3). Let C € HRedc(N). We must show that C €
HRedc(N \ N'). Let R be a confluent term rewrite system on Zpp oriented by > whose only
Boolean normal forms are T and L. Let C - 0 € irredgr(79PG(C)). We must show that

RU{F(EQ) | E-¢ € irredr(G(N\ N')) and E - €4 C- 0} [=ox F(C0)
Since C' € HRedc(N), we know that
RU{F(EQ) | E-¢ € irredg(G(N)) and E - €4 C -0} =\ F(CH)
So it suffices to show that

RU{F(ECQ) | E-¢ €irredg(G(N\ N')) and E-(€« C -0}
Eox RU{F(EC) | E-¢ €irredr(G(N)) and E - € C -6}

Let Ey - (o € irredr(G(N)) with Ey - (o 4 C - 0. We will show by well-founded induction on
FEy - (o w.r.t. « that

RU{F(EQ)| E-¢ €irredg(G(N\ N')) and E - ¢ €4 C -0} ox F(Eolo) (%)
Our induction hypothesis states:
RU{F(EQ) | E-¢ €irredg(G(N\ N')) and E - €« C -0}
Fox {F(EQ) | E-C €irredr(G(N)) and E- ¢ € Ey - (o}

If Ey - ¢p € irredp(G(N \ N')), the claim (x) is obvious. So we may assume that Fy - (o €
irredg(G(N')). The assumption of (R3) states N’ C HRed(N), and thus we have

RU{F(EC) | E-(€irredr(G(N)) and E - ¢ €4 Ep - Co} Fox F(Eoo)

By the induction hypothesis, this implies (x).
(R3) for inferences:

OPTIMISTIC LAMBDA-SUPERPOSITION 83

Inspecting this definition of HRed; (Definition 5.47), we observe that to show that
HRed1(N) C HRedi(N \ N'), it suffices to prove that

RU/{FE €irredgr(FIPG(N\ N")) | E <439 F(Crnbm)}

):o)\
RU{FE € irredr(FIPG(N)) | E <39 F(Crbm)}

(possibly without the condition E <3¢ F (Cy,0,,) for DIFF inferences), where C,, 6, and
R are given in the definition of HRed;. We can equivalently write this as

RU{F(EQ) | E-¢ € irredr(G(N \ N')) and E¢ < Cnbn}
Eox {F(EQ) | E-¢ € irredg(G(N)) and EC < Cpfim}

Let Ey - (o € irredg(G(N)) with Ey(p < Cpbr,. We must show that

RU{F(EQ) | E- ¢ € irredr(G(N \ N')) and EC < Crnbm} F=ox F (EoCo) (t)

If Ey- (o € irredr(G(N \ N')), the claim (t) is obvious. So we may assume that
Ey - (o € irredgr(G(N')). The assumption of (R3) states N’ C HRedc(N), and thus
N’ C HRedc(N \ N') by (R3) for clauses. So we have

RU{F(EQ) | E-¢ €irredg(G(N \ N")) and E - ¢ € Eg - (o} Fox F(Eolo)

This implies (1) because for any E - (with E - (<€ Ep - {p, we have E{ < Ey(yp < Cpnbm.

(R4) Let ¢ € HInf with concl(t) € N. We must show that « € HRed1(N). Let C1[S1],

.y C[Sm] be ¢’s premises and Cp,41[Sm+1] its conclusion. Let 61, ...,60,,+1 be a tuple
of substitutions for which ¢ is rooted in FInf (Definition 3.31). Let R be a confluent term
rewrite systems R oriented by > whose only Boolean normal forms are T and L such that
Cim+1 - Oy is variable-irreducible. According to the definition of HRedy (Definition 5.47),
we must show that

RUO Eox F(Crt10m+1)
where O = irredr(FJPG(N)) if ¢ is a DIFF inference and O = {E € irredr(FIPG(N)) |
E <35 F(Cmbm)} if ¢ is some other inference.

Since concl(r) € N and concl(t) = Cpy1[Sm+1], we have Cryq1[Sm+1] € N. Thus,
by Lemma 5.17, F(Crt10m+1) € FIPG(N). Since Crpy1 - Oy is variable-irreducible, we
have F(Cpy+10m+1) € irredp(FIPG(N)). This completes the proof for DIFF inferences
because F(Crt10m+1) Fox F(Cmt10m+1). For the other inferences, it remains to prove
that T(Cm_i_lem_i_l) ~g9F T(Cm(gm)

By Definition 3.31, F(Cy,0,,) is the main premise and F (Chy410m+1) is the conclusion
of an FInf inference. We will show for each FInf rule that the conclusion is smaller than
the main premise.

For FSUP, we must argue that C[t] =44 D’ vV C[t']. Since the literal ¢ ~ ¢ is strictly
eligible in D and if ¢ is Boolean, then ¢ = T, the literal ¢ ~ ¢’ is strictly maximal in D.
Since the position of ¢ is eligible in C[t], it must either occur in a negative literal, in a literal
of the form ¢ ~ L, or in a maximal literal in C[t]. If the position of ¢ is in a negative literal
or in a literal of the form ¢ ~ L, then that literal is larger than ¢ ~ ¢’ because if ¢’ is Boolean,
then t' = T. Thus, the literal in which ¢ occurs in C[t] is larger than D’ because t & t' is
strictly maximal in D. If the position of ¢ is in a maximal literal of C[t], then that literal is
larger than or equal to t &~ t' because D <y¢ C[t], and thus it is larger than D’ as well. In
Ct'], this literal is replaced by a smaller literal because t > 4¢ t'. So C[t] =4# D"V C[t'].

84 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

For FEQREsS, clearly, C' V u % u »4¢ C".

For FEQFACT, we have u = v =47 u ~ v’ and thus v =4¢ v'. Since u > 45 v, we have
u v g7 v7%v and thus the premise is larger than the conclusion.

For FCLAUSIFY, it is easy to see that for any of the listed values of s, ¢, and D, we have
st >4y D, using (O3)pr and (O4)pr. Thus the premise is larger than the conclusion.

For FBooLHoIST and FLOOBHOIST, we have u 44 L and u >4¢ T by (O4)pr because
u# 1 and u # T. Moreover, the occurrence of u in C[u] is required not to be in a literal of
the form v ~ L or u =~ T, and thus, by (O4)pr, it must be in a literal larger than these. It
follows that the premise is larger than the conclusion.

For FFALSEELIM, clearly, C'V L T =45 C'.

For FARGCONG, the premise is larger than the conclusion by (O5)pr.

For FEXT, we use the condition that u >4 w and (O3)pp to show that C[F (w)] is
smaller than the premise. We use u >4 w and (O5)pr to show that F (u diff(r, v)(u,w)) %
F (w diff (7, v)(u, w)) is smaller than the premise. [

Lemma 5.93. Let R be a confluent term rewrite system on Tpr oriented by > 55 whose
only Boolean normal forms are T and L. Let N C Cg be a clause set without parameters
such that for every C -0 € N and every grounding substitution p, we have C - p € N. Then
RU F(J(P(irredr(N)))) Fox F(I(P(N)))-

Proof. We apply Lemma 5.90. The required condition on J(N) can be derived from this
lemma’s condition on N as follows. We must show that for every C' -0 € P(N) and every
grounding substitution p that coincides with # on all variables not occurring in C, we
have C - p € P(N). The closure C - § € P(N) must be of the form C'p(#’) - q(#") with
C’-0" € N. Define p' = p(#')p. By this lemma’s condition on N, it follows that C’ - p' € N.
By Lemma 5.13, p(p’) = p(6’). We have yp = y6 = yq(¢’) for all variables y not occurring in
C' and in particular for all y not introduced by p(#’). Thus, by Lemma 5.14, q(p’) = p. So,
C-p=2(C"p) e P(N). []
Theorem 5.94. Given a fair derivation (N;)i>0, where

1. Ny does not have a term-generated model,

2. Ny does not contain parameters, and
3. Ny does not contain constraints,

we have L[S] € N; for some satisfiable constraints S and some index i.

Proof. By Lemma 9 of Waldmann et al. [33], using Lemma 5.92, the limit Noo = U, (;5; V;
is saturated up to redundancy w.r.t. HInf and HRedy. By Lemma 5.53, PG(N) is saturated
up to redundancy w.r.t. PGInf and PGRed;.

For a proof by contradiction, assume that for all S and all 4, L[S] & N;. Then N4, does
not contain such a clause L[S] either, and thus PG(N«) does not contain a clause of the
form L -6 for any . By Lemma 5.89, IS |= irredg(J(PG(Ns))), where R = Ryypg(Noo)-

By Lemma 8 of Waldmann et al. [33], using Lemma 5.92, Ny C Ny, U HRedc(No)-
Thus, R U irredr(FIPG(Nwo)) Fox irredr(FIPG(Np)). By Lemma 5.93 and conditions
2 and 3 from the present theorem, R U irredg(FIPG(No)) Eorx FIPG(Ny) and thus R U
irredg(FIPG (Noo)) For FIPG(Ny). Since PG = irredg(J(PG(Nwo))), by Lemma 5.86, it
follows that J'°C = 7(P(G(Ny))).

If we applied each closure’s substitution to its clause in the sets 7(P(G(Np))) and
7(Gnd(Np)), the two sets would be identical. So, since JW¢ = 7(P(G(Np))), we have
JWG = 9(Gnd(N)).

OPTIMISTIC LAMBDA-SUPERPOSITION 85

Now I'PG can be shown to be a model of Ny as follows. Let C € Ny. Let £ be a
valuation. Since J''C is term-generated by Lemma 5.85, there exists a substitution 6 such
that ﬂa&]]jIpG = &y(a) for all type variables o in C' and [20];pc = &we(w) for all term
variables 2’ in C. Since C' does not contain parameters by condition 2 of this theorem,
CH € J(Gnd(Np)). Thus we have J'P¢ = CH. By Lemma 4.2, it follows that C is true
w.r.t. &€ and JPG. Since ¢ and C' € Ny were arbitrary, we have PG |= Ny. This contradicts
condition 1 of the present theorem.

[

Lemma 5.95. Let N be a clause set that does not contain diff. If N has a term-generated
model, then N has a diff-aware model.

Proof. Let J = (Jy,d,£) be a model of N. We assume that the signature of J does not
contain diff. We extend it into a diff-aware model 3’ = (J;,,d’, £') as follows.

We define J'(diff, D1, Do, a,b) to be an element e € Dy such that a(e) # b(e) if such an
element exists and an arbitrary element of Dy otherwise. This ensures that J’ is diff-aware
(Definition 2.1).

To define £, let £ be a valuation and ¢ be a A-abstraction. We replace each occurrence
of diff(r, Ug(u w) int Wlth a ground term s that does not contain diff such that [s], =
J'(diff, [[T]]gty, [[U]]J:y [[u]] [[w]]). Such a term s exists because J is term-generated. We start
replacing the innermost occurrences of diff and proceed outward to ensure that the parameters
of a replaced diff do not contain diff themselves. Let ¢ be the result of this replacement.
Then we define £'(&,t) = L£(£,t'). This ensures that J' is a proper interpretation.

Since N does not contain diff and J is a model of N, it follows that J’ is a model of N
as well. []

Corollary 5.96. Given a fair derivation (N;)i>0, where
1. Nor L,

2. Ny does not contain parameters, and

3. Ny does not contain constraints,

we have L[S] € N; for some satisfiable constraints S and some indez 1.

Proof. By Theorem 5.94 and Lemma 5.95. L]

6. CONCLUSION

We presented the optimistic A-superposition calculus. It is inspired by the original A-super-
position calculus of Bentkamp et al. [6], which in turn generalizes the standard superposition
calculus by Bachmair and Ganzinger [1]. Our calculus has many advantages over the
original A-superposition calculus, including more efficient handling of unification, functional
extensionality, and redundancy. Admittedly, its main disadvantage is its lengthy refutational
completeness proof.

We have some ideas on how to extend the calculus further:

— We believe that the inference rules that still require full unification could be adapted
to work with partial unification by adding annotations to constrained clauses. The
annotations would indicate which variables and which constraints stem from rules with
the FLUID- prefix. A modification of the map p used in our proof could ensure that
these variables do not carry the guarantee of being variable-irreducible that currently

86 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

all variables carry. As a result, the proof of Lemma 5.53 would no longer require full
unification, but additional FLUIDSUP inferences would be required into the variables
marked by the annotations.

— We conjecture that the DIFF axiom is not necessary for refutational completeness although
our proof currently requires it. Our proof uses it in Lemma 5.80 to show that the
constructed model is a valid higher-order model in the sense that equality of functions
implies equality of their values on all arguments. We suspect that one can construct
a model with this property using saturation w.r.t. ARGCONG alone, but the model
construction must be different from the one used in the present proof.

— One of the most explosive rules of the calculus is FLuiDSup. Bhayat and Suda [11]
propose a modification of inference rules that delays flex-rigid pairs and flex-flex pairs by
adding them as negative literals to the conclusion. They suggest that this modification
in conjunction with additional inference rules for the unification of flex-rigid pairs could
remove the need for FLUIDSUP. We conjecture that one could prove refutational complete-
ness of such a calculus by restructuring Lemma 5.77 to apply the modified inference rules
instead of Lemma 5.76 whenever the only terms reducible by R correspond to positions
below applied variables on level H.

— Similarly, we conjecture that one could remove the EXT rule by following the idea of
Bhayat [10] to delay unification of functional terms by adding them as negative literals
to the conclusion. If we immediately apply NEGEXT to these additional literals, one
can possibly prove refutational completeness by restructuring Lemma 5.77 to apply the
modified inference rules instead of Lemma 5.76 whenever the only terms reducible by R¢
are functional terms.

Acknowledgment. We thank Ahmed Bhayat, Massin Guerdi, and Martin Desharnais for
suggesting textual improvements. We thank Nicolas Peltier and Maria Paola Bonacina who
we discussed some early ideas with.

Bentkamp and Blanchette’s research has received funding from the European Research
Council (ERC, Matryoshka, 713999 and Nekoka, 101083038) Bentkamp’s research has
received funding from a Chinese Academy of Sciences President’s International Fellowship
for Postdoctoral Researchers (grant No. 2021PT0015) and from the program Freiraum 2022
of the Stiftung Innovation in der Hochschullehre (ADAM: Anticipating the Digital Age
of Mathematics, FRFMM-83/2022). Blanchette’s research has received funding from the
Netherlands Organization for Scientific Research (NWQO) under the Vidi program (project
No. 016.Vidi.189.037, Lean Forward). Hetzenberger’s research has received funding from
the European Research Council (ERC, ARTIST, 101002685).

Views and opinions expressed are however those of the authors only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the European
Union nor the granting authority can be held responsible for them.

We have used artificial intelligence tools for textual editing.

REFERENCES

[1] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput., 4(3):217-247, 1994.

2]

27]

OPTIMISTIC LAMBDA-SUPERPOSITION 87

Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 19-99. Elsevier and MIT Press,
2001.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramodulation and
superposition. In Deepak Kapur, editor, CADE-11, volume 607 of LNCS, pages 462-476. Springer, 1992.
Alexander Bentkamp, Jasmin Blanchette, and Matthias Hetzenberger. Term orders for optimistic super-
position (unpublished manusscript). https://nekoka-project.github.io/pubs/optimistic_orders.
pdf.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirovié. Errata of “Superposition
for higher-order logic”. https://matryoshka-project.github.io/pubs/hosup_article_errata.pdf.
Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirovié. Superposition for
higher-order logic. J. Autom. Reason., 67(1):10, 2023.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe Waldmann. Errata
of “Superposition with lambdas”. https://matryoshka-project.github.io/pubs/lamsup_article_
errata.pdf.

Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe Waldmann.
Superposition with lambdas. J. Autom. Reason., 65(7):893-940, 2021.

Christoph Benzmiiller, Nik Sultana, Lawrence C. Paulson, and Frank Theiss. The higher-order prover
LeO-II. J. Autom. Reason., 55(4):389-404, 2015.

Ahmed Bhayat. Automated theorem proving in higher-order logic. PhD thesis, University of Manchester,
2021.

Ahmed Bhayat and Martin Suda. A higher-order vampire (short paper). In IJCAR (1), volume 14739 of
LNCS, pages 75—85. Springer, 2024.

Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The computability path ordering. Log.
Meth. Comput. Sci., 11(4), 2015.

Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363-408, 2012.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indag. Math, 75(5):381-392, 1972.
Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commun. ACM,
22(8):465-476, 1979.

Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, volume II, pages 1009-1062. Elsevier and MIT Press, 2001.
Melvin Fitting. Types, Tableaus, and Gdodel’s God. Kluwer, 2002.

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press, 1993.

Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci., 1(1):27-57,
1975.

Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe. TH1: The TPTP typed higher-order form with
rank-1 polymorphism. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors, PAAR-2016, volume
1635 of CEUR Workshop Proceedings, pages 41-55. CEUR-WS.org, 2016.

Dénes Kénig. Uber eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. (Szeged),
3499/2009(3:2-3):121-130, 1927.

Dale Miller. Unification under a mixed prefix. J. Symb. Comput., 14(4):321-358, 1992.

Robert Nieuwenhuis and Albert Rubio. Basic superposition is complete. In Bernd Krieg-Briickner, editor,
ESOP 92, volume 582 of LNCS, pages 371-389. Springer, 1992.

Robert Nieuwenhuis and Albert Rubio. Theorem proving with ordering and equality constrained clauses.
J. Symb. Comput., 19(4):321-351, 1995.

Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirovié. Errata of “Superposition
with first-class booleans and inprocessing clausification”. https://matryoshka-project.github.io/
pubs/boolsup_errata.pdf.

Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirovié. Superposition with first-
class Booleans and inprocessing clausification. In André Platzer and Geoff Sutcliffe, editors, CADE-28,
volume 12699 of LNCS, pages 378-395. Springer, 2021.

Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111-126, 2002.

https://nekoka-project.github.io/pubs/optimistic_orders.pdf
https://nekoka-project.github.io/pubs/optimistic_orders.pdf
https://matryoshka-project.github.io/pubs/hosup_article_errata.pdf
https://matryoshka-project.github.io/pubs/lamsup_article_errata.pdf
https://matryoshka-project.github.io/pubs/lamsup_article_errata.pdf
https://matryoshka-project.github.io/pubs/boolsup_errata.pdf
https://matryoshka-project.github.io/pubs/boolsup_errata.pdf

88 A. BENTKAMP, J. BLANCHETTE, M. HETZENBERGER, AND U. WALDMANN

[28] Geoff Sutcliffe. The 12th IJCAR automated theorem proving system competition—CASC-J12. The
European Journal on Artificial Intelligence, 38(1):3-20, 2025.

[29] Geoff Sutcliffe and Martin Desharnais. The CADE-29 automated theorem proving system competition—
CASC-29. AI Commun., 37(4):485-503, 2024.

[30] Petar Vukmirovié¢, Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, Visa Nummelin, and
Sophie Tourret. Making higher-order superposition work. J. Autom. Reason., 66(4):541-564, 2022.

[31] Petar Vukmirovié¢, Alexander Bentkamp, and Visa Nummelin. Efficient full higher-order unification. Log.
Methods Comput. Sci., 17(4), 2021.

[32] Petar Vukmirovi¢, Jasmin Blanchette, and Stephan Schulz. Extending a high-performance prover to
higher-order logic. In TACAS 2023, volume 13994 of LNCS, pages 111-129. Springer, 2023.

[33] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A comprehensive framework
for saturation theorem proving. J. Autom. Reason., 66(4):499-539, 2022.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Logic
	2.1. Syntax
	2.1.1. Types
	2.1.2. Lambda-Preterms and Lambda-Terms
	2.1.3. Preterms and Terms
	2.1.4. Substitutions
	2.1.5. Clauses
	2.1.6. Constraints

	2.2. Semantics
	2.3. The Extensionality Skolem Constant

	3. Calculus
	3.1. Orange, Yellow, and Green Subterms
	3.2. Complete Sets of Unifiers up to Constraints
	3.3. A Concrete Unification Strategy
	3.4. Term Orders and Selection Functions
	3.5. Concrete Term Orders
	3.6. The Core Inference Rules
	3.7. Redundancy
	3.7.1. Simple Clause Redundancy
	3.7.2. Simple Inference Redundancy

	3.8. Simplification Rules
	3.8.1. Analogues of First-Order Simplification Rules
	3.8.2. Additional Simplification Rules

	3.9. Examples

	4. Soundness
	5. Refutational Completeness
	5.1. Proof Outline
	5.2. Logics and Encodings
	5.2.1. First-Order Encodings
	5.2.2. Indexing of Parameters
	5.2.3. Partial Substitution
	5.2.4. Grounding

	5.3. Calculi
	5.3.1. First-Order Levels
	5.3.2. Indexed Partly Substituted Ground Higher-Order Level
	5.3.3. Partly Substituted Ground Higher-Order Level

	5.4. Redundancy Criteria and Saturation
	5.4.1. First-Order Level
	5.4.2. Indexed Partly Substituted Ground Higher-Order Level
	5.4.3. Partly Substituted Ground Higher-Order Level
	5.4.4. Full Higher-Order Level

	5.5. Trust and Simple Redundancy
	5.5.1. First-Order Level
	5.5.2. Indexed Partly Substituted Ground Higher-Order Level
	5.5.3. Partly Substituted Ground Higher-Order Level
	5.5.4. Full Higher-Order Level

	5.6. Model Construction
	5.6.1. First-Order Levels
	5.6.2. Indexed Partly Substituted Ground Higher-Order Level
	5.6.3. Partly Substituted Ground Higher-Order Level
	5.6.4. Full Higher-Order Level

	6. Conclusion
	Acknowledgment

	References

