SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

This document describes a simplified variant of the optimistic A-superposition calculus.
The main difference is that the present variant does not annotate clauses with constraints.
This simplifies especially the completness proof because we can use ground clauses instead
of ground closures in the first-order part of the proof. It also strengthens and simplifies the
redundancy criterion. However, we are forced to introduce superposition inferences into
variables when those variables also have occurrences inside parameters.

1. LocIc

Our formalism is higher-order logic with functional and Boolean extensionality, rank-1
polymorphism, but without choice and the axiom of infinity. The logic closely resembles
Gordon and Melham’s HOL [14], the TPTP TH1 standard [15], and the logic underlying
A-superposition by Bentkamp et al. [5].

Departing from Bentkamp et al., in the present work, quantifiers are not supported and
must always be encoded as (Az.t) & (Ax.T) and (A\z.t) ¢ (Az.L). This is necessary because
quantifiers would prevent us from constructing a suitable term order for the extensionality
behavior that we want to achieve. Moreover, we do not include the axiom of choice.

To make the positive literal of the extensionality axiom maximal, we introduce a special
type of argument to constants into our syntax, the parameters. A constant that takes
parameters cannot occur without them; partial application is not allowed for parameters.
Moreover, parameters cannot contain variables bound by A-abstractions.

As our semantics, we use Henkin semantics. True statements in these semantics
correspond exactly to provable statements in the HOL systems. Since Henkin semantics
is not subject to Godel’s first incompleteness theorem, it allows us to prove refutational
completeness.

1.1. Syntax. We use the notation a, or a to denote a tuple (ai,...,a,). If fis a unary
function, we write f(a,) for the elementwise application (f(ay),..., f(ay)).

1.1.1. Types. To define our logic’s types, we fix an infinite set Vi, of type variables. A set
Yty of type constructors, each associated with an arity, is a type signature if it contains
at least one nullary type constructor o of Booleans and a binary type constructor — of
functions. A type is either a type variable o € Vi, or an applied type constructor x(7,) for
some n-ary K € Xy, and types 7,. To indicate that an expression e has type 7, we write e : 7.
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1.1.2. Lambda-Preterms and Lambda-Terms. To define our logic’s terms, for a given type
signature Xy, we fix a set V of variables with associated types. We write 2(7) for a variable
named z with associated type 7. We require that V contains infinitely many variables of
any type.

A term signature ¥ is a set of constants. Each constant is associated with a type
declaration of the form Ila,,. 7, = v, where 7, and v are types and @,, is a tuple of
distinct variables that contains all type variables from 7, and v. The types 7, are the
types of the parameters of the constant, and v may be a function type if the constant takes
nonparameter arguments. We require that > contains the logical symbols T, L :0;2:0 — o;
AV,=:0— 00— 0; and &,% : [Ta. « — o — 0. A type signature and a term signature
form a signature.

Our syntax makes use of a locally nameless notation [10] using De Bruijn indices [11].
We distinguish between A\-preterms, A-terms, preterms, and terms. Roughly, A-preterms are
raw syntactic expressions, A-terms are the subset of locally closed A-preterms, preterms are
Bn-equivalence classes of A\-preterms, and terms are Sn-equivalence classes of A\-terms. More
precisely, we define these notions as follows.

The set of A-preterms is built from the following expressions:

— a variable x(7) : T for (1) € V;

— a symbol f(0,,)(uy,) : 7 for a constant f € ¥ with type declaration Ila,,. 7, = T, types Up,
and A-preterms « : 7, such that all De Bruijn indices in % are bound;

— a De Bruijn index n(7) : 7 for a natural number n > 0 and a type 7, where 7 represents
the type of the bound variable;

— a A-expression (1)t : 7 — v for a type 7 and a A-preterm ¢ : v such that all De Bruijn
indices bound by the new A(7) have type 7;

— an application st : v for A-preterms s : 7 — v and ¢t : 7.

The type arguments (7) carry enough information to enable typing of any A-preterm without
any context. We often leave them implicit, when they are irrelevant or can be inferred. In
f(Om)(uy) : 7, we call u, the parameters. We omit () when a symbol has no parameters.
Notice that it is possible for a term to contain multiple occurrences of the same free De
Bruijn index with different types. In contrast, the types of bound De Bruijn indices always
match.

The set of A-terms is the subset A-preterms without free De Bruijn indices, i.e, the subset
of locally closed A-preterms. We write 7*(X,V) for the set of all A-terms and TP™(%, V)
for the set of all A\-preterms, sometimes omitting the set V when it is clear from the context.

A A-preterm is called functional if its type is of the form 7 — v for some types T and wv.
It is called nonfunctional otherwise.

Given a A-preterm ¢ and A-terms sq, ..., Sy, we write t{0 — sg,...,n — s,} for the
A-preterm resulting from substituting s; for each De Bruijn index ¢ 4+ j enclosed into exactly
J A-abstractions in t. For example, (f01(Ag12)){0— a,1— b} =fab(Agab). Given
a A-preterm ¢ and a tuple §, of A-terms, we abbreviate t{0 — s1,...,(n — 1) — s,} as
t{(0,...,n—1) — 5p}.

We write |5 for the S-normal form of a A-preterm ¢.

A M-preterm s is a subterm of a A-preterm ¢, written t = t[s], if t = s, if t = f(7,,)(u) v
with u; = w;[s] or v = v[s], if t = Au[s], if t = (u[s]) v, or if ¢ = u (v]s]). A subterm is proper
if it is distinct from the A-preterm itself.
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A A-preterm is ground if it contains no type variables and no term variables, i.e., if
it is closed and monomorphic. We write ‘Tgii’ﬂid@) for the set of ground A\-preterms and
7> (X) for the set of ground A-terms.

ground

1.1.3. Preterms and Terms. The set of (pre)terms consists of the Sn-equivalence classes of
A-(pre)terms. For a given set of variables V and signature X, we write 7 (X,V) for the set of
all terms and 7P™(X,V) for the set of all preterms, sometimes omitting the set 'V when it is
clear from the context. We write Zgrounda(2) for the set of ground terms.

When referring to properties of a preterm that depend on the representative of its
equivalence class modulo 3 (e.g., when checking whether a preterm is ground or whether
a preterm contains a given variable z), we use a -normal representative as the default
representative of the fn-equivalence class. When referring to properties of a preterm that
depend on the choice of representative modulo 7, we state the intended representative
explicitly.

Clearly, any preterm in S-normal form has one of the following four mutually exclusive
forms:

— z(7) t for a variable x(r) and terms t;

— f(7)(u) t for a symbol f, types 7, and terms @, ¢;
— n(7) ¢ for a De Bruijn index n(r) and terms ¢;

— X(7) t for a term ¢.

1.1.4. Substitutions. A substitution is a mapping p from type variables o € Vi, to types ap
and from term variables z(7) € V to (A-)terms xp : Tp. A substitution p applied to a (A-)term
t yields a (A-)term tp in which each variable z is replaced by xp. Similarly, subsitutions can
be applied to types. The notation {& — 7,Z +— t} denotes a substitution that maps each «;
to 7; and each x; to t;, and all other type and term variables to themselves. The composition
po of two substitutions applies first p and then o: tpo = (tp)o. A grounding substitution
maps all variables to ground types and ground (\-)terms. The notation o[Z — ] denotes
the substitution that maps each z; to ¢; and otherwise coincides with o.

1.1.5. Clauses. Finally, we define the higher-order clauses on which our calculus operates.
A literal is an unordered pair of two terms s and ¢ associated with a positive or negative
sign. We write positive literals as s =~ t and negative literals as s % t. The notation s =~ t
stands for either s &= t or s % t. Nonequational literals are not supported and must be
encoded as s & T or s & L. A clause Ly V --- V L, is a finite multiset of literals. The
empty clause is written as L. Finally, we define a grounding function G on clauses as
G(C) ={CHh| 0 is a grounding substitution}

1.2. Semantics. The semantics is essentially the same as in Bentkamp et al. [5], adapted
to the modified syntax.

A type interpretation Jy = (U, Jyy) is defined as follows. The universe U is a collection
of nonempty sets, called domains. We require that {0,1} € U. The function gy, associates
a function Jy (k) : U™ — U with each n-ary type constructor , such that Jg, (o) = {0,1}
and for all domains Dy, Dy € U, the set Jry(—)(D1, Do) is a subset of the function space
from Dy to Day. The semantics is standard if Jey (—)(D1, D2) is the entire function space for
all D1, Da. A type valuation &y is a function that maps every type variable to a domain.
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The denotatwn of a type for a type mterpretatwn Jiy and a type valuation &, is recursively
defined by [a]{? = &y(a) and [s(DSY = gy ()([71).

Given a type interpretation Jiy and a type valuation &y, a term valuation &ee assigns an
element &e(z) € HTHﬁy to each variable z : 7. A valuation £ = (&, &) is a pair of a type
valuation &, and a term valuation e

An interpretation function J for a type interpretation Jty associates with each symbol
f:Na,,. = v, a domain tuple D, € U™, and values a € [[T]]j a value J(f, D,y  a) € [[U]]fty
where &, is a type valuation that maps each a; to D;. We requlre that

(I1) 4(T) =1 (I5) d(~)(a) =1 —a

(12) 3(L) =0 (I6) d(—)(a,b) = max {1 — a, b}

(I3) d(A)(a,b) = min {a,b} (I7) (=, )(c, d) =1if ¢ =d and 0 otherwise
(I14) J(V)(a,b) = max {a,b} (I8) (aé D)(¢,d) =0 if ¢ = d and 1 otherwise

for all a,b € {0,1}, D € U, and ¢,d € D.

The comprehension principle states that every function designated by a A-expression is
contained in the corresponding domain. Loosely following Fitting [13, Sect. 2.4], we initially
allow A\-expressions to designate arbitrary elements of the domain, to be able to define the
denotation of a A-term. We impose restrictions afterward using the notion of a proper
interpretation, enforcing comprehension.

A A-designation function L for a type interpretation thy is a function that maps a
valuation £ and a A-expression of type 7 to elements of [[T]]j We require that the value

L(&,t) depends only on values of ¢ at type and term variables that actually occur in t.
A type interpretation, an interpretation function, and a A-designation function form an
interpretation J = (Jyy,d, L).

For an 1nterpretat10n J and a Valuatlon &, the denotatlon of a A-term is defined as
1§ = &eele). [FANE)IS = 8(E, FIS 519D, [ 115 = [sIS(IA9), and [M(r) 415 = £(€, Ar) 0).
For ground A-terms ¢, the denotation does not depend on the choice of the valuation &,
which is why we sometimes write [t]; for [t]5.

An interpretation J is proper if [A(7) ], S (a) = [t{0— m}]](&y’&e[xﬁa] for all \-
expressions A(7) t and all valuations £, where z is a fresh variable. Given an 1nterpretatlon
J and a valuation &, a positive literal s = ¢ (resp. negative literal s % t) is true if [[5:]]j and
[[t]]j are equal (resp. different). A clause is true if at least one of its literals is true. A set of
clauses is true if all its elements are true. A proper interpretation J is a model of a set N of
clauses, written J = N, if N is true in J for all valuations £. Given two sets M, N of clauses,
we say that M entails N, written M = N, if every model of M is also a model of N.

QA QA QA Q1

1.3. The Extensionality Skolem Constant. Any given signature can be extended with
a distinguished constant diff : e, 5. (« — B, — ) = «a, which we require for our calculus.
Interpretations as defined above can interpret the constant diff arbitrarily. The intended
interpretation of diff is as follows:

Definition 1.1. We call a proper interpretation J diff-aware if J is a model of the exten-
sionality axiom—i.e.,

J = 2 (diff{a, B)(z,y)) # y (diff{a, B)(z,9)) V z = y

Given two sets M, N of clauses, we write M ke N if every diff-aware interpretation that is a
model of M is also a model of V.
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Our calculus is sound and refutationally complete w.r.t. k£ but unsound w.r.t. |=.

2. CALCULUS

2.1. Orange, Yellow, and Green Subterms. As in the original A-superposition calculus,
a central notion of our calculus is the notion of green subterms. These are the subterms that
we consider for superposition inferences. For example, in the clause f a % b, a superposition
inference at a or f a is possible, but not at f. Our definition here deviates from Bentkamp et
al. [5] in that functional terms never have nontrivial green subterms.

In addition to green subterms, we define yellow subterms, which extend green subterms
with subterms inside A-expressions, and orange subterms, which extend yellow subterms
with subterms containing free De Bruijn indices. Orange subterms are the subterms that
our redundancy criterion allows simplification rules to rewrite at. For example, the clauses
Ac#band fzz ~ c can make Af00 % b redundant (assuming a suitable clause order), but
ga# b and g = f cannot make f a % b redundant. It is convenient to define orange subterms
first, then derive yellow and green subterms based on orange subterms.

Orange subterms depend on the choice of S7-normal form:

Definition 2.1 (37-Normalizer). Given a preterm ¢, let ¢ |gyiong be its f-normal 7-long
form and let ¢ | gpshort be its S-normal n-short form. A fn-normalizer is a function |g, €

{\lfﬁnlonga iﬂnshort } .

Definition 2.2 (Orange Subterms). We start by defining orange positions and orange
subterms on A-preterms.

Given a list of natural numbers p and s,t € T*P*(X), we say that p is an orange position
of t, and s is an orange subterm of t at p, written t|, = s, if this can be derived inductively
from the following rules:

1. ul. = u for all u € TAP™(X), where ¢ is the empty list.

2. If ug|p = v, then (F(7)(3) 1y)|ip = v for all f € X, types 7, A-preterms 3, i, v € TAPT(X),
and 1 <17 <n.

3. If w;|p, = v, then (m(7) 4y)}ip = v for all De Bruijn indices m, types 7, A-preterms
TUp,v € T?(X), and 1 < i < n.

4. If ul, = v, then (A7) u)|1, = v for all types 7 and A-preterms u,v € T Pr¢(%).

We extend these notions to preterms as follows. Given a Sn-normalizer |g,, a list of natural

numbers p and s,t € TP™(X), we say that p is an orange position of ¢, and s is an orange

subterm of t at p w.r.t. |g,, written t|, = s, if (tlg,)|p = slg,-

The context u[ | surrounding an orange subterm s of u[s] is called an orange context.
The notation u< sy, or u¢s) indicates that s is an orange subterm in u[s] at position p, and
u< » indicates that u[ | is an orange context.

Example 2.3. Whether a preterm is an orange subterm of another preterm depends on the
chosen fn-normal form |g,. For example, the preterms f0 and 0 are orange subterms of Af0
in n-long form, but they are not orange subterms of the n-short form f of the same term.

Remark 2.4. The possible reasons for a subterm not to be orange are the following:

— It is applied to arguments.
— It occurs inside a parameter.
— It occurs inside an argument of an applied variable.
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Definition 2.5 (Yellow Subterms). Let |3, be a n-normalizer. A yellow subterm w.r.t.
}gy is an orange subterm that does not contain free De Bruijn indices. A yellow position
w.r.t. |g, is an orange position that identifies a yellow subterm. The context surrounding a
yellow subterm is called a yellow context.

Lemma 2.6. Whether a preterm is a yellow subterm of another preterm is independent of
bgn- (On the other hand, its yellow position may differ.)

Proof. 1t suffices to show that a single n-expansion or n-contraction from a S-reduced A-
preterm s into another 8-reduced A-preterm cannot remove yellow subterms. This suffices
because only such rn-conversations are needed to transform a S-normal n-long form into a
B-normal n-short form and vice versa.

Assume s has a yellow subterm at yellow position p. Consider the possible forms that a
B-reduced A-preterm s can have:

— z(7) t for a variable x(r) and \-preterms ¢;

— f(7)(u) t for a symbol f, types 7, and A\-preterms u, t;
— n(r) t for a De Bruijn index n(r) and \-preterms t;
— X(7) t for a A-preterm t.

Consider where an n-conversion could happen: If an n-expansion takes place at the left-hand
side of an application, the result is not S-reduced. If an 5-reduction takes place at the
left-hand side of an application, the original A-preterm is not S-reduced. If the yellow
subterm at p does not overlap with the place of n-conversion, the n-conversion has no
effect on the yellow subterm. This excludes the case where the n-conversion takes place in
an argument of an applied variable or in a parameter. So the only relevant subterms for
n-conversions are (a) the entire A-preterm s, (b) a subterm of ¢ in f(7)(@) ¢, (c) a subterm of
t in n(r) t, or (d) a subterm of ¢ in A(7) t.

Next, we consider the possible positions p. If the n-conversion takes place inside of
the yellow subterm, it certainly remains orange because orange subterms only depend on
the outer structure of the A-preterm. It also remains yellow because n-conversion does not
introduce free De Bruijn indices. This covers in particular the case where p is the empty list.
Otherwise, the yellow subterm at p is also (i) a yellow subterm of ¢ in f(7)(u) ¢, (ii) a yellow
subterm of ¢ in n(r) ¢, or (iii) a yellow subterm of ¢ in A(7) ¢. In cases (b), (c), and (d), we
can apply the induction hypothesis to ¢ or ¢ and conclude that the yellow subterm of ¢ or ¢
remains yellow and thus the yellow subterm of s at p remains yellow as well. In case (a), we
distinguish between the cases (i) to (iii) described above:

(i) Then the only option is an n-expansion of f(7)(u) ¢t to A f(7)(@) ¢ 0. Clearly, the yellow
subterm in ¢ remains yellow, although its yellow position changes.
(ii) Analogous to (i).
(iii) Here, one option is an n-expansion of At to A At 0, which can be treated analogously
to (i).

The other option is an n-reduction of A ¢ to t', where t = ¢’ 0. We must show that a
yellow subterm of ¢ is also a yellow subterm of #'. Since a yellow subterm of ¢ cannot
contain the free De Bruijn index 0, the A-preterm ¢’ must be of the form v w, where
the preterm v is a symbol or a De Bruijn index and the yellow subterm of t = v w0
must be a yellow subterm of one of the arguments w. Then it is also a yellow subterm
ofvw=1t. []
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Definition 2.7 (Green Subterms). A green position is an orange position p such that each
orange subterm at a proper prefix of p is nonfunctional. Green subterms are orange subterms
at green positions. The context surrounding a green subterm s of u[s] is called a green
context. The notation u<s», or u<{s> indicates that s is a green subterm in u[s| at position
p, and u< > indicates that u[ | is a green context.

Clearly, green subterms can equivalently be described as follows: Every term is a green
subterm of itself. If u is nonfunctional, then every green subterm of one of its arguments
s; is a green subterm of u = f(f) 5 and of u = n t. Moreover, since n-conversions can occur
only at functional subterms, both green subterms and green positions do not depend on the
choice of a fn-normalizer |g,.

Example 2.8. Let ¢ be a type constructor. Let a be a type variable. Let z : ¢ — ¢ be a
variable. Let a : ¢, f : Ila. t = (1 = ¢) = «, and g : « — ¢ — ¢ be constants. Consider the
term f(a)(a) (Ag(ra)0). Its green subterms are the entire term (at position €) and Ag(za)0
(at position 1). Its yellow subterms are the green subterms and x a (at position 1.1.1 w.r.t.
1Bniong OF at position 1.1 w.r.t. |gpshort). Its orange subterms w.r.t. |gpong are the yellow
subterms and g (x a) 0 (at position 1.1) and 0 (at position 1.1.2). Using | gpshort, the orange
subterms of this term are exactly the yellow subterms.

For positions in clauses, natural numbers are not appropriate because clauses and literals
are unordered. A solution is the following definition:

Definition 2.9 (Orange, Yellow, and Green Positions and Subterms in Clauses). Let C be a
clause, let L = s & ¢ be a literal in C, and let p be an orange position of s. Then we call the
expression L.s.p an orange position in C, and the orange subterm of C at position L.s.p is the
orange subterm of s at position p. Yellow positions/subterms and green positions/subterms
of clauses are defined analogously.

Example 2.10. The clause C = K V L with K = fa % b and L = ¢ = f a contains
the orange subterm a twice, once at orange position L.(f a).1 and once at orange position
K.(fa).l.

2.2. Complete Sets of Unifiers.

Definition 2.11. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers is a set P of unifiers of S
such that for each unifier 6 of S, there exists a substitution ¢ € P and a substitution p such
that xop = 26 for all x € X.

Given a set of constraints S and a set X of variables, we write CSUx (.S) or CSU(S) for
an arbitrary complete set of unifiers. Again, we require that all elements of CSU(.S) unify at
least the types of the terms pairs in S and that all elements of CSU(S) are idempotent.

2.3. Term Orders and Selection Functions. Our calculus is parameterized by a relation
> on terms, literals, and clauses. We call > the term order, but it need not formally be a
partial order. Moreover, our calculus is parameterized by a literal selection function.

The original A-superposition calculus also used a nonstrict term order =~ to compare
terms that may become equal when instatiated, such as x b 77 z a, where b > a. However,
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contrary to the claims made for the original A-superposition calculus, employing the nonstrict
term order can lead to incompleteness [6], which is why we do not use it in our calculus.
Moreover, the original A-superposition calculus used a Boolean selection function to
restrict inferences on clauses containing Boolean subterms. For simplicity, we omit this
feature in our calculus because an evaluation did not reveal any practical benefit [18].

Definition 2.12 (Admissible Term Order). A relation > on terms and on clauses is an
admissible term order if it fulfills the following criteria, where > denotes the reflexive closure
of »:

(O1) the relation > on ground terms is a well-founded total order;

(02) ground compatibility with yellow contexts: s’ > s implies t{s"y = t{ s> for ground

terms s, s', and ¢;

ground yellow subterm property: t{s» > s for ground terms s and t;

u > L > T for all ground terms u ¢ {T,L};

u = u diff (1, v)(s, t) for all ground types 7,v and ground terms s,t,u : 7 — v;

the relation > on ground clauses is the standard extension of > on ground terms via

multisets [1, Sect. 2.4];

(O7) stability under grounding substitutions for terms: ¢ > s implies t6 > s for all
grounding substitutions 6;

(O8) stability under grounding substitutions for clauses: D > C implies D > C6 for all
grounding substitutions 6;

(09) transitivity on literals: the relation > on literals is transitive;

Definition 2.13 (Maximality). Given a term order >, a literal K of a clause C' is mazimal
if for all L € C such that L = K, we have L < K. It is strictly maximal if it is maximal
and occurs only once in C.

In addition to the term order, our calculus is parameterized by a selection function:

Definition 2.14 (Literal Selection Function). A literal selection function is a mapping from
each clause to a subset of its literals. The literals in this subset are called selected. Only
negative literals and literals of the form ¢ ~ L may be selected.

Based on the term order and the selection function, we define eligibility as follows:

Definition 2.15 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution o in C' if
it is selected in C or there are no selected literals in C' and Lo is (strictly) maximal in Co.
A green position L.s.p of a clause C' is eligible w.r.t. a substitution o if the literal L is
either negative and eligible or positive and strictly eligible (w.r.t. o in C); and L is of the
form s &~ t € C such that so £ to.
When we do not specify a substitution, we mean eligibility w.r.t. the identity substitu-
tion.

2.4. Concrete Term Orders. A companion article [3] defines two concrete term orders
fulfilling the criteria of Definition 2.12: AKBO, inspired by the Knuth—Bendix order, and
ALPO, inspired by the lexicographic path order. Since the companion article defines the
orders only on terms, we extend =jpo and =ypo to literals and clauses via the standard
extension using multisets [1, Sect. 2.4].



SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 9

Theorem 2.16. Let =)o denote the strict variant of AKBO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols, a function w
assigning weights to symbols, a constant wyqp defining the weight of De Bruijn indices, and a
function K assigning argument coefficients to symbols. Assume that these parameters fulfill
w(T)=w(l) =1, wyp > w(diff), f > L > T for all symbols f ¢ {T,L}, and K(diff,i) =1
for every i. Using the extension defined above, =xpo s an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.11 and 5.11 of the companion
article, =gwbo is the restriction of >jupo to ground terms.

(O1) By Theorems 3.8 and 3.10 of the companion article, >gwbo is a total order. By
Theorem 3.11 of the companion article, it is well founded.

(0O2) By Theorem 3.14 of the companion article, —g\kbo 1S compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.15 of the companion article, >gpo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.16 of the companion article, u >gwbo L >grbo T for all ground terms
u ¢ {T,L}, using our assumptions about the weight and precedence of T and L.

(O5) By Theorem 3.17 of the companion article, u >gwbo u diff (7, v)(s,t) for all ground types
7,v and ground terms s,t,u : T — v, using our assumptions about the weight and
argument coeflicients of diff.

(O6) By definition of our extension of >)kpo to clauses.

(O7) By Theorems 4.10 and 5.10 of the companion article.

(O8) Using the Dershowitz—Manna definition [12] of a multiset, it is easy to see that stability
under substitutions for terms implies stability under substitutions for clauses.

(09) By Theorem 5.13 of the companion article, =jpo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals.

[

Theorem 2.17. Let =ypo denote the strict variant of ALPO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols and a watershed
symbol ws. Assume that f > L > T for all symbols f ¢ {T,L}, that L < ws, and that
diff <ws. Using the extension defined above, =ypo 5 an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.20 and 5.17 of the companion
article, =g\ po is the restriction of =5, to ground terms.

(O1) By Theorems 3.21 and 3.22 of the companion article, >gpo is a total order. By
Theorem 3.23 of the companion article, it is well founded.
v Theorem 3.24 of the companion article, =g\ o is compatible with orange contexts
02) By Th 3.24 of th i ticl gNlpo | tible with text
and thus also with yellow contexts.
y Theorem 3.25 of the companion article, =4\no €njoys the orange subterm property
03) By Th 3.25 of th i ticl aAp joys th bt t
and thus also the yellow subterm property.
vy Theorem 3.26 of the companion article, u =gpo L =aripo or all ground terms
04) By Th 3.26 of th i ticl glpo L =gapo T for all dt
u ¢ {T,L}, using our assumptions about the precedence of T and L.
0O5) By Theorem 3.27 of the companion article, u >g\po u diff (7, v)(s,t) for all ground types
ghp
7,v and ground terms s,t,u : 7 — v, using our assumption about the precedence of diff.
(O6) By definition of our extension of >yp, to clauses.
(O7) By Theorems 4.19 and 5.16 of the companion article.



10 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

(O8) Using the Dershowitz-Manna definition [12] of a multiset, it is easy to see that stability
under substitutions for terms implies stability under substitutions for clauses.

(09) By Theorem 5.19 of the companion article, >jpo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals.

[

2.5. The Core Inference Rules. The calculus is parameterized by an admissible term
order > and a selection function hsel. We denote this calculus as HInf™ "¢ or just HInf.

Each of our inference rules describes a collection of inferences, which we formally define
as follows:

Definition 2.18. An inference ¢ is a tuple (Cy,Cq,...,Cphi1) of clauses, written
c, Cy - O,
Cn—l—l
The clauses Cy,Co,...,C), are called premises, denoted by prems(t), and C,4; is called

conclusion, denoted by concl(t). The clause C), is called the main premise of ¢, denoted
by mprem(t). We assume that the premisses of an inference do not have any variables in
common, which can be achieved by renaming them apart when necessary.

Our variant of the superposition rule, originating from the standard superposition
calculus, is stated as follows:

D
——
D'vtxt Cw
; ; UP
(D' v C<t'>)o
1. 0 € CSU(t = u);
2. w is not a variable, unless there exists another occurrence of that variable inside of a
parameter in C,
3. wo is nonfunctional;
4. to A t'o;
5. the position of u is eligible in C w.r.t. o;
6. t &~ t' is strictly maximal in D w.r.t. o;
7. there are no selected literals in D.

The rule FLUIDSUP simulates superposition below applied variables:
D

—
D'vixt Clw
(D' v C<zt)o
with the following side conditions, in addition to SUP’s conditions 3 to 7:

1. 0 € CSU(2 t = u);
2. wu is variable-headed, and if u is a variable, then there exists another occurrence of that
variable inside of a parameter in C;
8. z is a fresh variable;
9. (zt)o # (2 t')o;
10. zo # X 0.

FrLuipSup
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The equality resolution rule EQRES and the equality factoring rule EQFACT also originate
from the standard superposition calculus:
C C

—t—

C'Vud C'viu =vVvVumw

—/EQRES ; ; ; EQFact
C'o (C'"VvEuv Vux)e

Side conditions for EQRES:

1. 0 € CSU(u = u');

2. u ' is eligible in C w.r.t. o.
Side conditions for EQFACT:

1. 0 € CSU(u =u');

2. u =~ v is eligible in C w.r.t. o;

3. there are no selected literals in C
4. uo LA wo.

The following rules CLAUSIFY, BoOoLHO1sT, LOOBHOIST, and FALSEELIM are responsi-
ble for converting Boolean terms into clausal form. The rules BooLHoI1ST and LooBHOIST
each come with an analogue, respectively called FLUuIDBOOLHOIST and FLUIDLOOBHOIST,
which simulates their application below applied variables.

C'Vs~t
(C'"V D)o
with the following side conditions:
1.ceCSU(s=¢,t=1);
2. s =t is strictly eligible in C w.r.t. o;
3. sis not a variable, unless there exists an occurrence of that variable inside of a parameter
in C;
4. the triple (s',¢', D) is one of the following, where « is a fresh type variable and x and y
are fresh term variables:

(xAy, T, x=T)
zVy, T, zx=TVyxT)
r=y T, zx~LVyxT)

CLAUSIFY

xAy, T, y=T) (xAy, L, a~1lVvyxl)
( xVy, L, x~ 1) (xVy, L, y=1)
( r—=y, L, zxT) (x=y, L, y~1)
(
(
(

r(a)y, T, z~y) TRy, L, x#y)
)y, T, x#y) Ty, L, x~y)
-z, T, x~ 1) -z, L, xxT)
C C
w BooLHoisT w LooBHoisT
(C<L>VurT)o (C<T>Vurl)o

each with the following side conditions:

1. o is the most general type substitution such that uo is of Boolean type (i.e., the identity
if u is of Boolean type or {a +— o} if u is of type « for some type variable a);

2. u is neither T nor L, and if u is a variable, there exists another occurrence of that variable
inside of a parameter in C

3. the position of u is eligible in C w.r.t. o;
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4. the occurrence of w is not in a literal of the form u~ 1L oru~T.

Cluy
(CizLovaexT)o

1. w is variable-headed, and if u is a variable, there exists another occurrence of that variable
inside of a parameter in C

2. uo is nonfunctional;

x is a fresh variable of Boolean type, and z is a fresh variable of function type from

Boolean to the type of u;

o€ CSU(zx = u);

(z L)o # (z x)o;

zo # A0;

xo # T and xo # L;

the position of u is eligible in C' w.r.t. o.

FruibBooLHoOIST

w

X N> oA

Cluy
(C<zTyrVaerl)o

with the same side conditions as FLuibBooLHoisT, but where L is replaced by T in
condition 5.

FruibLooBHOIST

C
—
C'Vs~t

—— — FALSEELIM
Co

with the following side conditions:

1. eCSU(s=L,t=T);

2. s &t is strictly eligible in C w.r.t. o.

The argument congruence rule ARGCONG and the extensionality rule EXT convert
functional terms into nonfunctional terms. The rule EXT also comes with an analogue
FLuibEXT, which simulates its application below applied variables.

C

—
C'Vs~s
ARGCONG

! /
C'oVsocx~sox

with the following side conditions:

1. o is the most general type substitution such that so is functional (i.e., the identity if s is
functional or {a +— (8 — )} for fresh 5 and ~ if s is of type « for some type variable «);

2. s~ ¢ is strictly eligible in C' w.r.t. o;

3. z is a fresh variable.

Cluwy
Coyy V uo (diff (1, v)(uo,y)) % y (diff (1, v)(uo, y))

with the following side conditions:

EXT
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1. o is the most general type substitution such that uo is of type 7 — v for some 7 and v;
2. y is a fresh variable of the same type as uo;
3. the position of u is eligible in C w.r.t. 0.

Clwy
(C<zy> v x (diff (o, B)(z,y)) # y (diff(a, B)(z,y)))o

with the following side conditions:

FLuiDEXT

1. u is variable-headed,;

2. uo is nonfunctional;

3. x and y are fresh variables of type o — (3, and z is a fresh variable of function type from
a — (3 to the type of u;

o€ CSU(S, zx = u);

(z )0 # (2 y)o;

zo # A0;

the position of u is eligible in C w.r.t. o.

ootk

Our calculus also includes the following axiom (i.e., nullary inference rule), which
establishes the interpretation of the extensionality Skolem constant diff.

DIFF

y (diff(a, B)(y. 2)) # = (diff (v, B)(y,2)) V y o ~ 2 2

2.6. Redundancy. Our calculus includes a redundancy criterion that can be used to delete
certain clauses and avoid certain inferences deemed redundant. The criterion is based on a
translation to ground monomorphic first-order logic.

Let X be a higher-order signature. We require ¥ to contain a symbol diff : Il«, 5. (v — 3,
a — ) = «a. Based on this higher-order signature, we construct a first-order signature ¥ (X)
as follows. The type constructors are the same, but — is an uninterpreted symbol in the
first-order logic. For each ground higher-order term of the form f(7)(a) : 71 — -+ — 7p — 7,
with m > 0, we introduce a first-order symbol fZ : 74 X - - - X 7,,, = 7. Moreover, we introduce
a first-order symbol fun; : 7 — v for each higher-order term ¢ of type 7 — v.

We define an encoding ¥ from higher-order ground terms to first-order terms:

Definition 2.19. For ground terms t, we define ¥ recursively as follows: If ¢ is functional,
then let #(t) = fun;. Otherwise, ¢ is of the form f(7)(a) ¢, and we define F(t) =
o (F(t1), . Ftm)).

For clauses, we apply F on each side of each literal individually.

Lemma 2.20. The map F is a bijection between higher-order ground terms and first-order
ground terms.

Proof. We can see that F(s) = ¥ (t) implies s = ¢ for all ground s and ¢ by structural
induction on ¥ (s). Moreover, we can show that for each first-order ground term ¢, there
exists an s such that F(s) = t by structural induction on ¢. Injectivity and surjectivity
imply bijectivity. L]

We consider two different semantics for our first-order logic: =g and |,). The
semantics =g, is the standard semantics of first-order logic. The semantics =, restricts
o1 to interpretations J with the following properties:
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— Interpreted Booleans: The domain of the Boolean type has exactly two elements, [T]; and
[L];, and the symbols =, A, V, =, &7, %" are interpreted as the corresponding logical
operations.

— Extensionality w.r.t. diff: For all ground u,w : 7 — v, if J =g F (u diff(7,v)(s,1)) ~
F(w diff(1,v)(s,t)) for all ground s,t: 7 — v, then J ¢ F(u) = F(w).

— Argument congruence w.r.t. diff: For all ground w,w,s,t: 7 — v, if I g F(u) = F(w),
then J =1 F (u diff(r,v)(s,t)) ~ F (w diff (T, v)(s,t)).

2.6.1. Clause Redundancy. Our redundancy criterion for clauses provides two conditions
that can make a clause redundant. The first condition applies when the ground instances
of a clause are entailed by smaller ground instances of other clauses. It generalizes the
standard superposition redundancy criterion to higher-order clauses. The second condition
applies when there are other clauses with the same ground instances. It can be used to
justify subsumption. For this second condition, we fix a well-founded partial order 3 on
Gu, which prevents infinite chains of clauses where each clause is made redundant by the
next one. For example, following Bentkamp et al. [7, Sect. 3.4], a sensible choice is to define
C 1 D if either C is larger than D in syntactic size (i.e., number of variables, constants,
and De Bruijn indices), or if C' and D have the same syntactic size and C' contains fewer
distinct variables than D.

Definition 2.21. Since ¥ is bijective on ground terms by Lemma 2.20, we can convert
a term order > on higher-order terms into a relation >4 on ground first-order terms as
follows. For two ground first-order terms s and ¢, let s =g ¢ if F~1(s) = F71(¢).

Definition 2.22 (Clause Redundancy). Given a clause C' and a clause set N, let C' €
HRedc(N) if for each grounding substitution 6 at least one of the following two conditions
holds:

LAE € F(G(N)) | E <5 F(CO)} |Fox F(CO); or
2. there exists a clause D € N and a grounding substitution p such that C 3 D and

Dp=C8.

2.6.2. Inference Redundancy. To define inference redundancy, we first define a calculus
FInf on ground first-order logic with Booleans. It is parameterized by a relation > on
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ground first-order terms and a selection function on ground first-order clauses.

/_/,iﬁ /_'/C;ﬁ
D'vtxt C[t] C'Vuzu
FSup —  FEQRES
D' v C[t] c’
<
C'Vux=iv Vu=ov C'Vsa~t
FEQFact ——— FCLAUSIFY
C'VoEd Vumwv C'vD
Clu] Clu]
FBooLHoiIsT FLooBHoOIST
(CL]VuxT) ClT]Vur 1
c
——
C'v1iaT
T FFALSEELIM
C
c'vF F(s
(5) > F(5) FArRcCoNG
C' Vv F (s diff(r,v)(u,w)) ~ F (s diff(1,v)(u,w))
F(u
ClF (u)] PEXT

C[F (w)] V F (udiff (T, v)(u, w)) % F(w diff (T, v)(u, w))

F (u diff (1, v)(u, w)) 2 F(w diff (1, v)(u,w)) V F(u s) ~

Side conditions for FSuUP:

t is nonfunctional;

t -t

D < Clt];

the position of ¢ is eligible in C;
t =~ t' is strictly eligible in D;

if ¢’ is Boolean, then ¢/ = T.

A R i

Side conditions for FEQRES:
1. w % u is eligible in C.
Side conditions for FEQFACT:

1. u =~ v is maximal in C|
2. there are no selected literals in C
3. u > v,

Side conditions for FCLAUSIFY:

1. s &~ t is strictly eligible in C' V s =~ t;

F(w s)

FDirr

15



16 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

2. The triple (s,t, D) has one of the following forms, where 7 is an arbitrary type and u, v
are arbitrary terms:
(uAv, T, uxT) (uAv, T, v=T) (uAv, L, urx1lVvoxl)
uVo, T, uxTVoxrT) (uVo, L, ur 1) (uVo, L, v~ l)
u—=v, T, ur LVoxT) (u=v, L, urT) (u—=v, L, vxl)
(us"v, L, uso)
(ugg" v, L, uxwv)
—~wu, T, urx 1) (~u, L, uxT)
Side conditions for FBooLHo1sTand FLOOBHOIST:

1. u is of Boolean type

2. w is neither T nor 1;

3. the position of u is eligible in C;

4. the occurrence of u is not in a literal L with L=u~Lor L=u=~T.
Side conditions for FFALSEELIM:

1. L =~ T is strictly eligible in C.

Side conditions for FARGCONG:

1. sis of type 7 — v;

2. u,w are ground terms of type 7 — v;
3. F(s) =~ F(s') is strictly eligible in C.
Side conditions for FEXT:

1. the position of ¥ (u) is eligible in C;
2. the type of u is 7 — v;

3. w is a ground term of type 7 — v;

4. u = w.

Side conditions for FDIFF:

1. 7 and v are ground types;
2. u,w, s are ground terms.

Definition 2.23. We convert a selection function hsel on higher-order clauses into a selection
function ¥ (hsel) on ground first-order clauses as follows: Let a literal L of a first-order
ground clause C be selected if F~1(L) is selected in F~1(C).

Definition 2.24. Let ¢ € HInf™" for a term order = and a selection function hsel. Let

Cy, ..., Cp be its premises and Cy,41 its conclusion. Let (61, ..., 0p+1) be a tuple of
grounding substitutions. We say that ¢ is rooted in FInf for (61, ..., Om41) if and only if
F(Crms10m+1)

is a valid FInf~7%(hsel) inference ¢/ such that the rule names of « and ¢/ correspond up to
the prefixes F and FLUID.

Definition 2.25 (Inference Redundancy). Let N C (. Let ¢ € HInf an inference with
premises (1, ..., Cy, and conclusion C),+1. We define HRed; so that « € HRed;(N) if for
all substitutions (01, ..., 60mn4+1) for which ¢ is rooted in FInf (Definition 2.24), we have
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— ¢ is a DIFF inference and F(G(N)) Fox F(Cpm+10m+1); or
— ¢ is some other inference and {E € F(G(N)) | E <¢ F(Cibm)} Eox F(Crt10m+1)-

2.7. Simplification Rules.

2.7.1. Analogues of First-Order Simplification Rules. Our notion of clause redundancy
(Definition 2.22) can justify most analogues of the simplification rules implemented in Schulz’s
E prover [19, Sections 2.3.1 and 2.3.2]. Deletion of duplicated literals, deletion of resolved
literals, syntactic tautology deletion, positive simplify-reflect, and negative simplify-reflect
adhere to our redundancy criterion. Semantic tautology deletion can be applied as well, but
we must use the entailment relation =, under the encoding ¥.

Our analogue of clause subsumption is the following.

C CovVvD
C

SUBSUMPTION

with the following side condition:
1. D# 1 orCoC.

Lemma 2.26. SUBSUMPTION can be justified by clause redundancy.

Proof. Let 6 be a grounding substitution. If D is nonempty, we apply condition 1 of
Definition 2.22, which holds because the clause Cof is a proper subclause of (Co VvV D)6
and therefore F(Cof) Eox F((Co vV D)§) and Cof < (Co vV D)f. If D = L, we apply
condition 2 of Definition 2.22, which holds by condition 1 of SUBSUMPTION. ]

For rewriting of positive and negative literals (demodulation) and equality subsumption,
we need to establish the following properties of orange subterms first:

Lemma 2.27. Let |g, be a Bn-normalizer. An orange subterm relation u{ sy, w.r.t. Lo
can be disassembled into a sequence sy ... sy as follows: s1 is a green subterm of u; s = s;
and for each i < k, s; = \'s; and s;11 is a green subterm of s;.

Proof. By induction on the size of v in n-long form.

If each orange subterm at a proper prefix of p is nonfunctional, then p is green, and we
are done with £ =1 and s1 = s.

Otherwise, let p = q.r such that ¢ is the shortest prefix with nonempty r, where the
orange subterm s; at ¢ is functional. Then s; is a green subterm of u at ¢ because there does
not exist a shorter prefix with a functional orange subterm. Moreover, since s; is functional,
modulo 7-conversion, s; = A s for some s). Since r is nonempty and s is the orange subterm
of s1 at r, there exists r’ at most as long as r such that s is the orange subterm of s} at
r'. Specifically, if s1]g, is a A-abstraction, we use 1.r' = r and otherwise ' = r. By the
induction hypothesis, since s is an orange subterm of s}, there exist so, ..., s, with s = s
such that s; = A s, and s;41 is a green subterm of s for each i < k. ]

Lemma 2.28. Let |g, be a fn-normalizer. Let u be a ground term, and let p be an orange
position of uw w.r.t. {g,. Let v, v be ground preterms such that u< vy, and uv"y, are terms.
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Let k be a number large enough such that v{(0,...,k—1) — tx} and V'{(0,....k —1) — 4}
do not contain free De Bruijn indices for all tuples of terms t;,. Then

{F({(0,....;k—1) —~ 1} ~'{(0,...,k — 1) = &1 }) | each ¢; of the form diff(_, )(_, )}
Fox F (u€vyp = ugv’yy)
Proof. Let J be a |=qy-interpretation with
IEox F{(0,....,k —1) =} = 0'{(0,...,k — 1) = 1;})

for all tuples of terms t;, where each ¢; is of the form diff(_, _)(_, ) for arbitrary values of ‘.
By Lemma 2.27, we have u<v), = u<A wi<{A wa - wp{v) - >>>.

STEP 1. Since v is a green subterm of w,<v> and the terms f; have a form that does not
trigger -reductions when substituting them for De Bruijn indices, v{(0, ...,k — 1) — &} is
a green subterm of wy,<v>{(0,...,k — 1)+ t;} and thus

I Eox Fwn<vD{(0,....k—1) =t} = w, 0 D{(0,... .k —1) = t;})

STEP 2. Using the property of extensionality w.r.t. diff of |=,)-interpretations and using
the fact that we have shown the above for all ¢; of the form diff(_, _)(_, -), we obtain
I Eox FI(Awn<vD){0 to,. .., (k—2) = tr} &~ A w, <0 D){0— to, ..., (k—2) — tx})
Iterating steps 1 and 2 over wy,, ..., w1, u, we obtain
I Fox F(ugvyp = uv’yy) O
Our variant of rewriting of positive and negative literals (demodulation) is the following.

t~t Cvd

DEMOD

txet Cgv»
with the following side conditions:
1. to = v{(0,...,k — 1) — Ty} and t'c = 0'{(0,...,k — 1) — T} for some fresh variables
T and a substitution o.
2. Oy = C<';
3. for each tuple t;, where each ¢; is of the form diff(_, _)(, -), we have C<v)y = v{(0,..., k—
1) =t} =0 {(0,....,k = 1) — &1 };

Remark 2.29. In general, it is unclear how to compute condition 3 of DEMOD. For AKBO
and ALPO described in Section 2.4, however, the condition can easily be overapproximated
by C¢vd = v =~ v, using the fact that the orders are also defined on preterms.

To prove that this is a valid overapproximation, it suffices to show the following: Let
u and s be preterms with u = s (resp. u 77 s). Let s’ be the result of replacing some De
Bruijn indices in s by terms of the form diff(_, )(_,-). Then u > s (resp. u 27 §).

PrOOF FOR AKBO: By induction on the rule deriving u > s or u 7~ s. Since we assume in
Section 2.4 that wy, > w(diff) and K (diff,i) = 1 for every i, we have W(s) > W(s'). It is
easy to check that there is always a corresponding rule deriving u = s’ or u 7~ &', in some
cases using the induction hypothesis.

PrOOF FOR ALPO: By induction on the rule deriving v > s or u 2~ s. Considering that we
assume in Section 2.4 that ws > diff, it is easy to check that there is always a corresponding
rule deriving u = s’ or u 77 s, in some cases using the induction hypothesis.
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Since DEMOD makes use of orange subterms, it depends on the choice of Sn-normalizer.
Both | gylong and | gyshort yield a valid simplification rule:

Lemma 2.30. DEMOD can be justified by clause redundancy, regardless of the choice of
Bn-normalizer.

Proof. Let 6 be a grounding substitutiion. We apply condition 1 of Definition 2.22, using
C«vy for C. Let T = {t; | each t; is a ground term of the form diff(_, -)(_, )} and let
pi, = o{Z — 13, }0 for each tj, € T. By condition 1 of DEMOD,
(t = t")pg, = v{(0, —1) = 1 }0 ~ v'{(0, — 1)t 10
_?)9{( —1)'—)tk}~’09{( k—l)'—>tk}
for each tuple t, € T
By Lemma 2.28, F({(t = t')pz, | tx € T}) For F(ubv0y = ubv'0y), where u is a
side of a literal in C¢v) containing the orange subterm v. Thus
F{E=t)pg, |t € TH U{F(CH0)} For F(CLvHO)
Condition 2 of DEMOD implies C'¢v'>0 < C'<vyf. Condition 3 of DEMOD implies (¢ =
t')pz, < C<wy0 for all t, € T. Thus condition 1 of Definition 2.22 applies. ]

Our variant of equality subsumption is the following;:
txt C'Vsuy =~ s>
tat

EQUALITYSUBSUMPTION

with the following side conditions:

1. to = v{(0,...,k — 1) — Zx} and t'c = V'{(0,...,k — 1) — Ty} for some fresh variables
Ty, and a substitution o;

2. for each tuple ¢, where each t; is of the form diff(_, _)(_, -), we have C<v)» = v{(0,..., k —
1) =t} =0 {(0,....k—1) =t };

To compute condition 2, we can exploit Remark 2.29.

Lemma 2.31. EQUALITYSUBSUMPTION can be justified by simple clause redundancy, re-
gardless of the choice of Bn-normalizer.

Proof. Analogous to Lemma 2.30. []

2.7.2. Additional Simplification Rules. The core inference rules ARGCONG, CLAUSIFY,
FavLseELiM, LooBHOIST, and BOOLHOIST described in Section 2.5 can under certain
conditions be applied as simplification rules.

Lemma 2.32. ARGCONG can be justified as a simplification rule by clause redundancy
when o is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. Let 0 be a grounding substitution. We apply condition 1 of Definition 2.22. Let
7 — v be the type of s and s'6. By the extensionality property of =,y, we have
{F(C'V sz~ s x)0[x — diff(1,v)(u, w)]) | u,w : 7 = v ground} o\ F((C'V s = 5')0)
By (05), we have (C' V s’z ~ s x)0[z — diff (1, v)(u, w)] < (C" V s ~ ') for all such 7, v,
u, and w. Thus condition 1 of Definition 2.22 applies. []
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Lemma 2.33. CLAUSIFY can be justified as a simplification rule by clause redundancy when
o is the identity for all variables other than x and y. Moreover, it can even be applied when
its eligibility condition does not hold.

Proof. By condition 1 of Definition 2.22, using the fact that |=,) interprets Booleans. []

Lemma 2.34. FALSEELIM can be justified as a simplification rule by clause redundancy
when o is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. By condition 1 of Definition 2.22, using the fact that |=,) interprets Booleans. []

Lemma 2.35. BOOLHOIST and LOOBHOIST can be justified to be applied together as a
simplification rule by clause redundancy when o is the identity. Moreover, they can even be
applied when their eligibility condition does not hold.

Proof. By condition 1 of Definition 2.22, using the fact that =,y interprets Booleans. []

The following two rules normalize negative literals with T and L into positive literals.
C'Vs#T C'Vs# L
—— NOTTRUE —— NOTFALSE

C'Vs~1 C'Vs~T

Lemma 2.36. NOTTRUE and NOTFALSE can be justified as simplification rules by simple
clause redundancy.

Proof. By condition 1 of Definition 2.22, using the fact that =,y interprets Booleans. []

The following rule is inspired by one of Leo-II’s extensionality rules [8]:
C
—_——
C'Vs#s
C' v sdiff(r,v)(s,s") % s diff(T,v)(s,s)

NEGEXT

Lemma 2.37. NEGEXT can be justified by simple clause redundancy.

Proof. Let 0 be a grounding substitution. We apply condition 1 of Definition 2.22. By the
argument congruence property of ., we have

FU(C"V sdiff(r,v)(s,s") % s diff(1,0)(s,5))0) For F((C"V s % 5)0)

By (05), we have (C' V & diff(r,v)(s,s") % sdiff(r,v)(s,s'))0 < (C" V s % s')§. Thus
condition 1 of Definition 2.22 applies. []

2.8. Examples. In this subsection, we illustrate the various rules of our calculus on concrete
examples. For better readability, we use nominal A notation.

Example 2.38 (Selection of Negated Predicates). This example demonstrates the value
of allowing selection of literals of the form ¢ &~ 1. Although the original A-superposition
calculus was claimed to support selection of such literals, its completeness proof was flawed
in this respect [4,17].
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Consider the following clause set:
(1) parT

(2) gb~

3)rc~

(4 )pﬂc~J_\/qy~J_\/rz~J_

Let us first explore what happens without literal selection. Due to the variables in (4), all of

the literals in (4) are incomparable w.r.t. any term order. So, since none of the literals is

selected, there are three possible SUP inferences: (1) into (4), (2) into (4), and (3) into (4).
After applying FALSEELIM to their conclusions, we obtain:

B)gqyr=LlVvrzal
6)pr~LVrzxl
(Mpr~LVqyxl

For each of these clauses, we can again apply a SUP inference using (1), (2), or (3), in two
different ways each. After applying FALSEELIM to their conclusions, we obtain three more
clauses: pxr ~ L, gy~ L and rz & L. From each of these clauses, we can then derive
the empty clause by another SUP and FALSEELIM inference. So, without literal selection,
depending on the prover’s heuristics, a prover might in the worst case need to perform
3+3-24 1 =10 Sup inferences to derive the empty clause.

Now, let us consider the same initial clause set but we select exactly one literal whenever
possible. In (4), we can select one of the literals, say the first one. Then there is only one
possible SUP inference: (1) into (4), yielding (5) after applying FALSEELIM. In (5), we can
again select the first literal. Again, only one SUP inference is possible, yielding r z ~ L
after applying FALSEELIM. Another SUP and another FALSEELIM inference yield the empty
clause. Overall, there is a unique derivation of the empty clause, consisting of only three
SuP inferences.

Example 2.39 (Simplification of Functional Literals). Consider the following clauses, where
f and g are constants of type ¢ — .

(1) f=~g
(2) f#g

A Sup inference from (1) into (2) is not possible because the terms are functional. Instead,
we can apply ARGCONG and NEGEXT to derive the following clauses:

(3) fzr~gx (by ARGCONG from (1))
(4) f diff(f, g) % g diff(f,g) (by NEGEXT from (2))

Both ARGCONG and NEGEXT are simplification rules, so we can delete (1) and (2) after
deriving (3) and (4). Now, a SUP inference from (3) into (4) and a EQRES inference yield
the empty clause.

In contrast, the original superposition calculus requires both the SuP inference from (1)
into (2) and also a derivation similar to the one above. Moreover, its redundancy criterion
does not allow us to delete (1) and (2). This amounts to doubling the number of clauses
and inferences—even more if f and g had more than one argument.
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Example 2.40 (Extensionality Reasoning). Consider the following clauses:
(1) map (Au.sqrt (add w 1)) = % map (Au. sqrt (add 1 u)) =
(2) add uv ~ add v u

For better readability, we omit type arguments and use subscripts for the parameters of diff.
Using our calculus, we derive the following clauses:

(3) sqrt (add (dlﬂ:)\u sqrt (add u 1),,2) 1) 5‘9 z (dlff)\u sqrt (add u 1),z) v
map z x % map (Au.sqrt (add 1 u)) z (by EXT from (1))

(4) sqrt (add diﬂ:/\u. sqrt (add u 1),\u. sqrt (add 1 ) 1) 76
sqrt (add 1 diffy,,. sqrt (add u 1),Au. sqrt (add 1 u))
(5) sqrt (add 1 dlﬂ:)\u sqrt (add u 1),Au. sqrt (add 1 u)) A?'é
sqrt (add 1 d|ff)\u. sqrt (add w 1), u. sqrt (add 1 u))
(6) L (by EQRES from (5))

(by EQRES from (3))

(by Sup from (2), (4))

While such a derivation is also possible in the original A-superposition calculus, the term
orders of the original calculus were not able to compare the literals of the extensionality
axiom

y diff, . % 2 diff, . Vy ~ 2

As a result, the extensionality axiom leads to an explosion of inferences. Our calculus avoids
this problem by ensuring that the positive literal of the extensionality axiom is maximal, via
the ordering property (O5). By replacing the extensionality axiom with the EXT rule, we
avoid in addition SUP inferences into functional terms, and it strengthens our redundancy
criterion.

Example 2.41 (Universal Quantification). Consider the following clause set:
(1) Az.pz) =~ (A\z. T)
(2)paml

Here, clause (1) encodes the universal quantification Vz. p x. We can derive a contradiction
as follows:

(3) px~T (by ARGCONG from (1))

(4) T~ L (by Sup from (2), (3))

(5) L (by FALSEELIM from (4))
Since the ARGCONG inference creating clause (3) can be used as a simplification rule by
Lemma 2.32, clause (1) can be deleted when creating clause (3). So we do not need to apply
any EXT inferences into clause (1). Except for inferences into (1) and except for a DIFF

inference, the inferences required in the derivation above are the only ones possible. In this
sense, the encoding of the universal quantifier using A-abstractions has no overhead.

Example 2.42 (Existential Quantification). Negated universal quantification or existential
quantification can be dealt with similarly. Consider the following clause set:

(1) (Ax.pz) % (Az.T)
(2) pr~=T
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We can derive a contradiction as follows:
(3) pdiff(t,0)(A\x. pz, Az.T) %
(4) pd|ff<L o) Az.pz, \x.T) =
(5) T (by Sup from (2), (4))
(6) L (by FALSEELIM from (5))

(by NEGEXT from (1))

T
1 (by NOTTRUE from (3))

Again, we can delete (1) when creating (3), preventing any EXT inferences from (1). Moreover,
we can delete (3) when creating (4). As a result, encoding existential quantification using
A-abstraction does not have overhead either.

Example 2.43. This example illustrates why condition 2 of SUP allows u to be a variable
if it has another occurrence inside of a parameter. Consider the following clause set:

(1) b~ a
(2) (Az. (mpzy) A(pzyVysa)) # (Ar. 1)
(3) (Ax. (mpxb)A(pxbVbga)) % (A\x. L)
Note that the clauses (Az. ...) % (Ax. L) can be read as Jz.... and that (3) is an instance
of (2). Clauses (1) and (3) alone are unsatisfiable because (1) ensures that the right side of
the disjunction pz bV b % a in (3) is false, and since (-pz b) A (p x b) is clearly false, clause
(3) is false.
For the following derivation, we assume b > a. Applying NEGEXT to (2) and (3) followed
by NOTFALSE yields
(4) -p diffy,. (~pz y)A(p x yvyza), z. L Y A pdiffy,. (~pz y)A(p x yVyza), z. L Y Vy $ arT
(5) —p diffy,. (=p z b)A(p = bVbza),\z. L b A pdiffy,. (mp z b)A(p z bVbga),\z. L bVb 5é a~T
For better readability, we omit the type arguments and write the parameters of diff as
subscripts. Applying CLAUSIFY several times yields
( ) p diffy,. (=pzy)A(pz yVyza),dz. L Y ~ 1
(7) p dlﬂ:)\x (mpzy)A(p z yVysta),dz. L Y =~ TV Yy # a
(8) p diffy,. (mp z b)A(p z bVbga),Az. L b~ Ll
(9) p diff .. (mp z b)A(p z bVbgéa),Az. L b~TVb ¢ a
By positive simplify-reflect on (9), followed by DEMOD from (1) into the resulting clause,
we obtain the clause
(10) p diffxz. (=p« b)A(p 2 bvbgga) Ae. L3~ T

In this derivation, (2), (3), (4), (5), and (9) can be deleted because NEGEXT, NOTFALSE,
CLAusIFY, DEMOD, and positive simplify-reflect can be applied as simplification rules.
Moreover, (8) can be deleted by SUBSUMPTION using (6) and a suitable relation 7. The
following clauses remain:

(1) b a

(6) pdiffrs. (—pazy)A(pa yvypa) e LY = L

(7) pdiffxe. (vpzy)A(payvypta)re. LY T VY #a
(10) pdiffyz. (=p = b)A(p 2 bVbgga) A, LA R T
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Assuming that the negative literal in (7) is selected and that b > a, we now need a Sup
inference from (1) into the variable y in the second literal of (7), which is possible because y
also appears in a parameter in (7). This SUP inference yields:

(11) p dlfF)\:L‘ (=p z b)A(p x bVbga),Az. L b~TVa % a

The empty clause can then be derived using EQRES, a SuP inference with (6), and
FALSEELIM.

3. SOUNDNESS

To prove our calculus sound, we need a substitution lemma for terms and clauses, which our
logic fulfills:

Lemma 3.1 (Substitution Lemma). Let 6 be a substitution, and let t be a term of type T.
For any proper interpretation I = (Jyy,d, L) and any valuation &,

615 = [£15

where the modzﬁed valuation &' is defined by §ty( a) = [[ae]]ﬁg for type variables o and
§e() = [[939]]3 for term variables x.

Proof. By induction on the size of the term t.
CASE t = z(T):
14615 = [=0];
= ¢ (x) (by the definition of interpretation)
= [[x]]gl (since z is mapped to [[xﬁ]]g)

= 145
CASE t = f(T)(u):

[6]5 = [F(70)(@6)]5

(f, [[Te]]&v [[ae]] ) (by definition)

a(f, [[T]]jty, [[u]]j ) (by induction hypothesis)
= [f

= [t

(T >( )]]J (by definition)
15
CASE t = st
[6]5 = [0 v]5
= [[se]]lg ([[ve]/ﬁ ) (by definition)
= [[s]]§ (/[[’U]]g ) (by induction hypothesis)
= s UJ]g (by definition)
= 15
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CASE t = X(1) w:
[16]5(e) = [M79) w6l ()
= [ub{0 — x}]]g&y’&E[mHaD (since J is proper; for some fresh variable x)

= [[U{O — JE}H]]g&tyvfte[xHa])

= [u{0 — :v}]]gay’ﬂe[mﬁal) (by induction hypothesis)

= [\7) u]]gl(a) (since J is proper)

= [¢]5 (a)
[]

Lemma 3.2 (Substitution Lemma for Clauses). Let 0 be a substitution, and let C be a
clause. For any proper interpretation J = (Jyy,d, L) and any valuation &, CO is true w.r.t. J
and £ if and only if C is true w.r.t. J and &', where the modified valuation &' is defined by
ry(a) = [[a@]]gz for type variables o and & () = [[acﬂ]]g for term variables x.

Proof. By definition of the semantics of clauses, C0 is true w.r.t. J and £ if and only if one
of its literals is true w.r.t. J and €. By definition of the semantics of literals, a positive literal
s0 ~ t0 (resp. negative literal s % t) of CO is true w.r.t. J and £ if and only if [[seﬂg and
[[tﬁ]]g are equal (resp. different). By Lemma 3.1, [[59]]§ and [[t&]]ﬁ are equal (resp. different) if
and only if [[s]]g and [[t]]§ are equal (resp. different)—i.e., if and only if a literal s ~ ¢ (resp.
s t) in C is true w.r.t. J and &¢'. This holds if and only if C is true w.r.t. J and ¢'. ]

Theorem 3.3. All core inference rules are sound w.r.t. k= (Definition 1.1). All core inference
rules except for EXT, FLUIDEXT, and DIFF are also sound w.r.t. |=. This holds even when
ignoring order, selection, and eligibility conditions.

Proof. We fix an inference and an interpretation J that is a model of the premises. For EXT,
FLUDEXT, and DIFF inferences, we assume that J is diff-aware. We need to show that it
is also a model of the conclusion. By Lemma 3.2, J is a model of the o-instances of the
premises as well, where o is the substitution used for the inference. From the semantics of
our logic, it is easy to see that congruence holds at green positions and at the left subterm
of an application. To show that J is a model of the conclusion, it suffices to show that the
conclusion is true under J, £ for all valuations &.

For most rules, it suffices to make distinctions on the truth under J, ¢ of the literals
of the o-instances of the premises, to consider the conditions that ¢ is a unifier where
applicable, and to apply congruence. For BooLHoIsT, LOOBHOIST, FALSEELIM, CLAUSIFY,
FruibBooLHoisT, FLUIDLOOBHOIST, we also use the fact that J interprets logical symbols
correctly. For EXT, FLUIDEXT, and DIFF, we also use the assumption that J is diff-aware. [ ]

4. REFUTATIONAL COMPLETENESS

4.1. Logics and Encodings. In our completeness proof, we use two higher-order signatures
and one first-order signature.

Let ¥y be the higher-order signature used by the calculus described in Section 2. It is
required to contain a symbol diff : la, 8. (« = B, a0 = ) = «

Let 31 be the signature obtained from Xy in the following way: We replace each
constant with parameters f : Na,,. 7, = 7 in Xy with a family of constants fgn’" : 7, indexed
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by all possible ground types 0, and ground terms t,, € Tground(X1) of type Tn{am — O }.
Constants without parameters (even those with type arguments) are left as they are.
In some contexts, it is more convenient to use terms from Zgounda(X1) instead of

Teround (1) in the subscripts ¢; of the constants fg ™. We follow this convention:

Convention 4.1. In the subscripts ¢; of constants fgn’" € Y1, we identify each term of the
form f(0p,)(tn) € Toround (X1) with the term ft—im € Zground (1), whenever n > 0.

Similarly, the first-order signatures 7 (X1) and ¥ (Xy) as defined in Section 2.6 are
almost identical, the only difference being that the subscripts ¢ of the symbols fun; € F(Xx)
may contain symbols with parameters, whereas the subscripts ¢ of the symbols fun, € F (%)
may not. To repair this mismatch, we adopt the following convention using the obvious
correspondence between the symbols in F (Xg) and F(X5):

Convention 4.2. In the subscripts of constants fun; in 7 (Xg) and #(X1), we identify each
term of the form f(0,,)(t,) € Tground(Xn) With the term 2 € Tgrouna(¥1), whenever n > 0.
Using this identification, we can consider the first-order signatures ¥ (Xg) and F(X;) to be
identical.

The table below summarizes our completeness proof’s four levels, each with a set of
terms and a set of clauses. We write Tx for the set of terms and (Cx for the set of clauses of
a given level X:

Level Terms Clauses

F ground first-order terms over F (Xp) clauses over Tp
1G Tground (X1) clauses over 7ig
G Tground (XH) clauses over Ig
H 7(Xn) clauses over Ty

4.1.1. First-Order Encoding. We use the map ¥ defined in Definition 2.19 both as an
encoding from 7 /Gg to Tr/Cr and as an encoding from 7g/Cq to T/ Cr. Potential for
confusion is minimal because the two encodings coincide on the values that are in the domain
of both.

Lemma 4.3. A term s € T is a green subterm of t € Tiq if and only if F(s) is a subterm
of F(t).
Proof. By induction using the definition of . []

4.1.2. Indexing of Parameters.

Definition 4.4 (Indexing of Parameters). The transformation 7 translates from 7g to Tig
by encoding any occurrence of a constant with parameters f(o)(u) as fZ. Formally:

I(x) =
IA1)
5) =
5)

()
I(f(0) 5) = £{v) 5(5)

a(f <—>(a) =f2 9(5)if k>0
J(m 8) = m J(s)

We extend 7 to clauses by mapping each side of each literal individually.
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Lemma 4.5. Let t € Tgound(X1), and let C be a clause over Tyrouna(Xu). Then F(I(t)) =
F(t) and F(3(C)) = F(C).

Proof. For t, the claim follows directly from the definitions of J (Definition 4.4) and F
(Definition 2.19), relying on the identification of fun; and fun, (Convention 4.2). For C,
the claim holds because 7 and ¥ map each side of each literal individually. []

4.2. Calculi. In this section, we define the calculi IGInf and GInf, for the respective levels
IG and G. Both of these calculi are parameterized by a relation > on ground terms and
ground clauses and by a selection function sel. The specific requirements on > depend on
the calculus and are given in the corresponding subsection below.

For the F level, we use the calculus FiInf =%l introduced in Section 2.6. We require that
> is an admissible term order for FInf in the following sense:

Definition 4.6. Let > be a relation on ground terms and ground clauses. Such a relation
>~ is an admissible term order for FInf if it fulfills the following properties:

(O1)p the relation > on ground terms is a well-founded total order;
O2)r ground compatibility with contexts: if s’ > s, then s'[t] = s[t];
)r ground subterm property: t[s] > s for ground terms s and t¢;
Jr u > L > T for all ground terms u ¢ {T, L};
JE F(u) = F(udiffyy) for all s,t,u: 7 — v € Tground (X1);
6)r the relation > on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];

Remark 4.7. By Lemma 4.5 and because J is a bijection, the rules FARGCONG, FEXT,
and FDIFF, can equivalently be described by using s,s’,u,w from Zground(21) instead of
Tground (X1) and replacing diff (7, v)(u, w) with diff}7 .

4.2.1. Indezed Ground Higher-Order Level. The calculus IGInf™*¢ is parameterized by a
relation > and a selection function sel. We require that > is an admissible term order for
IGInf in the following sense:

Definition 4.8. Let > be a relation on Zgound(21), and on clauses over Zground(X1). Such
a relation > is an admissible term order for IGInf if it fulfills the following properties:
(Ol)1e the relation > on ground terms is a well-founded total order;
(02)1¢ ground compatibility with yellow contexts: s’ > s implies t¢s"y > t{ s for ground
terms s, s’, and t;
)ic ground yellow subterm property: t<s)» = s for ground terms s and ¢;
Jic u>= L =T for all ground terms u ¢ {T,L};
ic u = udiff} for all ground terms s,t,u: 7 — v.
)ic the relation = on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];

The rules of IGInf~*¢! (abbreviated IGInf) are the following.
D

—N—
D'vtxt Ot
D' v C<t>

IGSup
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with the following side conditions:

1. ¢t is nonfunctional;
2.t t;
3. D < C<ty
4. the position of t is eligible in C;
5. t &~ t' is strictly eligible in D;
6. if ¢’ is Boolean, then ¢/ = T.
C C
—_— A
C’'Vugu C’'Vumiv Vumwv
———— IGEQRESs p p —IGEQFacT
C C'Vogv Vumwv

Side conditions for IGEQRES:
1. u % u is eligible in C.
Side conditions for IGEQFACT:

1. u ~ v is maximal in C|
2. there are no selected literals in C
3. u = v.

C'Vvs~t
———— IGCLAUSIFY
cC'vD
with the following side conditions:

1. s &~ t is strictly eligible in C' V s =~ t;
2. The triple (s,t, D) has one of the following forms, where 7 is an arbitrary type and u, v
are arbitrary terms:

ulNv, T, uxT) uAv, T, vx=T) (uAv, L, urLlVoxl)

( (
(uVo, T, urTVoxT) (uVo, L, ur~ 1) (uVo, L, v=l)
(u—=v, T, uxLVoxT) (u=v, L, urT) (u—=v, L, vxl)
(us"v, T, urwv) (us" v, L, uswo)
(ugg” v, T, uswv) (uge” v, L, u=w)
(mu, T, ur 1) (mu, L, urxT)
C<uy C<uy
IGBooLHoisT IGLooBHoOIST
C<L>vuxT C<{TOVu=1l

each with the following side conditions:

1. u is of Boolean type;

2. w is neither T nor L;

3. the position of u is eligible in C;

4. the occurrence of u is not in a literal of the form u~ 1L oru~ T.
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c
——~
C'v1iaxT

T IGFALSEELIM

with the following side conditions:
1. L = T is strictly eligible in C.

c
———

C'Vs~s
C'Vs diff; %, ~ s’ diff7%,
with the following side conditions:

IGARrRGCONG

1. sis of type 7 — v;
2. u,w are ground terms of type 7 — v;
3. s~ ¢ is strictly eligible in C'.

Cluy
: : IGEXT
C<wy V udiff, % w diff7
with the following side conditions:
1. the position of u is eligible in C'(u);
2. the type of u is 7 — v;
3. w is a ground term of type 7 — v;
4. u = w;
IGDIFF

wdiffy, % udiffy, Vus~ws
with the following side conditions:

1. 7 and v are ground types;
2. u,w are ground terms of type 7 — v;
3. sis a ground term of type 7.

4.2.2. Ground Higher-Order Level. Like on the other levels, the calculus GInf is parame-
terized by a relation > and a selection function sel.

Definition 4.9. Let > be a relation on Zground(Xm)and on clauses over Toround(XH). Such
a relation > is an admissible term order for GInf if it fulfills the following properties:

(O1)g the relation > on ground terms is a well-founded total order;

(02)g ground compatibility with yellow contexts: s’ > s implies t<s"y = t<s) for ground
terms s, s’, and t;

) ground yellow subterm property: t<s» > s for ground terms s and ¢;

)Jag u > L =T for all ground terms u ¢ {T, L};

)a u = udiff(r,v)(s,t) for all ground terms s,t,u: 7 — v.

)g the relation > on ground clauses is the standard extension of > on ground terms
via multisets [1, Sect. 2.4];
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The calculus rules of GInf are a verbatim copy of those of IGInf, with the following
exceptions:

— GInf uses Y instead of X1 and (¢ instead of Gg.
— The rules are prefixed by G instead of IG.

— GARGCONG uses diff (1, v)(u,w) instead of diff}’ .
— GEXT uses diff (7, v)(u, w) instead of diff};7,.

— GDIFF uses diff (7, v)(u, w) instead of diff}7 .

4.3. Redundancy Criteria and Saturation. In this subsection, we define redundancy
criteria for the levels F, IG, and G and show that saturation up to redundancy on one level
implies saturation up to redundancy on the previous level. We will use these results in
Section 4.4 to lift refutational completeness from level F to level H.

Definition 4.10. A set N of clauses is called saturated up to redundancy if every inference
with premises in N is redundant w.r.t. N.

4.3.1. First-Order Level. In this subsection, let > be an admissible term order for FInf
(Definition 4.6), and let fsel be a selection function on Gp.

Definition 4.11 (Inference Redundancy). Given ¢ € FInf and N C (Cp, let ¢ € FRed;(N) if
¢ is a DIFF inference and N =,y concl(t) or if ¢ is not a DIFF inference and {E € N | E <

mprem (1)} Fox concl(t).

4.3.2. Indexed Ground Higher-Order Level. In this subsubsection, let > be an admissible
term order for IGInf (Definition 4.8), and let igsel be a selection function on Gg.

To lift the notion of inference redundancy, we need to connect the inference systems
FiInf and IGInf as follows.

Lemma 4.12. Since > is an admissible term order for IGInf (Definition 4.8), the relation
= defined in Definition 2.21 is an admissible term order for FInf (Definition 4.6).

Proof. This is easy to see, considering that # is a bijection between Tground(X1) and Tp
(Lemma 2.20), that every first-order subterm corresponds to a higher-order yellow subterm
by Lemma 4.3, and that F maps each side of each literal individually. []

Definition 4.13. We extend ¥ to inference rules by mapping an inference ¢ € IGInf to the
inference

F (prems(1))
F (conel(r))

Lemma 4.14. The mapping F is a bijection between IGInf™"9% and FInf~7% (95D  where
F (igsel) is defined in Definition 2.23.

Proof. This is easy to see by comparing the rules of IGInf and FInf and considering
Remark 4.7. It is crucial that the following concepts match:

— Subterms on the F level correspond to green subterms on the IG level by Lemma 4.3.
— The term orders correspond (Definition 2.21).
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— The selected literals correspond; i.e., a literal L is selected in a clause C' if and only if
the literal 7 (L) is selected in F(C). This follows directly from the definition of ¥ (igsel)
(Definition 2.23).

— The concepts of eligibility correspond; i.e., a literal L of a clause C' € (g is (strictly)
eligible w.r.t. > if and only if the literal F (L) of the clause C is (strictly) eligible w.r.t.
=¢; and a position L.s.p of a clause C' € (g is eligible w.r.t. > if and only if the
position F(L).F (s).p of the clause F(C) is eligible w.r.t. >4. This is true because
eligibility (Definition 2.15) depends only on the selected literals and the term order, which
correspond as discussed above. []

Definition 4.15 (Inference Redundancy). Given ¢ € IGInf™"9¢ and N C (g, let ¢ €
IGRed1(N) if F(¢) € FRedi(F(N)) (Definition 4.11) w.r.t. >¢.

Using the bijection between IGInf and FInf, we can show that saturation w.r.t. IGInf
implies saturation w.r.t. FInf:

Lemma 4.16. Let N be saturated up to redundancy w.r.t. IGInf™%%!. Then F(N) is

saturated up to redundancy w.r.t. FInf*f’ﬂigsel).

Proof. By Lemma 4.14 and Definition 4.15. []

4.3.3. Ground Higher-Order Level. In this subsubsection, let > be an admissible term order
for GInf (Definition 4.9), and let gsel be a selection function on (g.

Since mapping J is clearly bijective, we can transfer > from the G level to the IG level
as follows:

Definition 4.17. Let - be a relation on Zgound(XH) and on clauses over Zground(XH). We
define a relation >4 on Tgound(X1) and on clauses over Zground(21) as d >4 e if and only if
J71(d) = 97 (e) for all terms or clauses d and e.

Lemma 4.18. Since = is an admissible term order for GInf (Definition 4.9), the relation
>4 is an admissible term order for IGInf (Definition 4.8).

Proof. This is easy to see, considering that 7 is a bijection and that 7 and 7! preserve
yellow subterms. L]

Since 7 is bijective, we can transfer the selection function as follows:

Definition 4.19. Based on gsel, we define J(gsel) as a selection function that selects the
literals of C' € (jg corresponding to the gsel-selected literals in 7-1(C).

Definition 4.20. We extend J to inference rules by mapping an inference ¢+ € GInf to the
inference

J(prems(t))
J(concl(r))
Lemma 4.21. The mapping J is a bijection between GInf™ 9% and IGInf~7-7(95¢).

Proof. This is easy to see by comparing the rules of GInf and IGInf. It is crucial that the
following concepts match:

— Green subterms on the IG level correspond to green subterms on the G level.
— The term orders correspond (Definition 4.17).
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— The selected literals correspond; i.e., a literal L is selected in a clause C' if and only if
the literal 7(L) is selected in J(C'). This follows directly from the definition of 7(gsel)
(Definition 4.19).

— The concepts of eligibility correspond; i.e., a literal L of a clause C' € (g is (strictly) eligible
w.r.t. > if and only if the literal J(L) of the clause C' is (strictly) eligible w.r.t. =4; and a
position L.s.p of a clause C' € (¢ is eligible w.r.t. > if and only if the position 7(L).7(s).p
of the clause J(C) is eligible w.r.t. >=4. This is true because eligibility (Definition 2.15)
depends only on the selected literals and the term order, which correspond as discussed
above. []

Definition 4.22 (Inference Redundancy). Let N C (g and ¢ € GInf. We define « € GRed;
if 7(¢) € IGRed1(J(N)).

Lemma 4.23. Let N C Cq be saturated up to redundancy w.r.t. GInf™9¢. Then J(N) is
saturated up to redundancy w.r.t. IGInf=77(9%).

Proof. By Lemma 4.21 and Defintion 4.22. L]

4.3.4. Full Higher-Order Level. In this subsubsection, let > be an admissible term order
(Definition 2.12) and let hsel be a selection function (Definition 2.14).

Lemma 4.24. The relation > is an admissible term order for GInf.
Proof. Conditions (O1) to (O6) are identical to conditions (O1)g to (O6)g. []
The selection function is transferred as follows:

Definition 4.25. Let N C (Cg. We choose a function g;,l, depending on this set N, such
that Gy'(C) € N and G(Gxy'(C)) = C for all C € G(N). Then we define G(hsel, N) as a
selection function that selects the literals of C' € G(NN) corresponding to the hsel-selected
literals in g;,l(C) and that selects arbitrary literals in all other clauses.

Lemma 4.26 (Lifting of Order Conditions). Let t,s € T(Xy), and let ¢ be a grounding
substitution. If t( > sC, thent A s. The same holds for literals.

Proof. We prove the contrapositive. If ¢t < s, then, by (O7), t{ < s¢. Therefore, since > is
asymmetric by (O1), t¢ # s¢. The proof for literals is analogous, using (O6) and (08). []

Lemma 4.27 (Lifting of Maximality Conditions). Let C € Cy. Let 6§ be a grounding
substitution. Let Lo be (strictly) mazximal in CO. Then there exists a literal L that is
(strictly) mazimal in C such that LO = Ly.

Proof. By Definition 2.13, a literal L of a clause C is maximal if for all K € C' such that
K > L, we have K < L.

Since Ly € C0, there exist literals L in C such that L = L. Let L be a maximal one
among these literals. A maximal one must exist because > is transitive on literals by (O9)
and transitivity implies existence of maximal elements in nonempty finite sets. Let K be a
literal in C' such that K > L. We must show that K < L. By Lemma 4.26, K0 4 L0 = Ly.
By (O1), > is a total order on ground terms, and thus K6 = Ly. By maximality of Ly in
CH, we have K0 < Ly and thus K6 = Ly by (O1). Then K < L because we chose L to be
maximal among all literals in C' such that L8 = L.

For strict maximality, we simply observe that if I occurs more than once in C, it also
occurs more than once in C6. []
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Lemma 4.28 (Lifting of Eligibility). Let N C Gi. Let Cg € G(N), let Cy = G5 (Ca),
and let 0 be a grounding substitution such that Cq = Cy6.

— Let Lg be a literal in Cg that is (strictly) eligible w.r.t. G(hsel, N). Then there exists a
literal Ly; in Cyg such that Lg = L0 and, given substitutions o and ¢ with 0 = xo( for
all variables x in Cy, Ly is (strictly) eligible in Cy w.r.t. o and hsel.

— Let Lg.sg.pg be a green position of Cq that is eligible w.r.t. G(hsel, N). Then there exists
a green position Ly.sy.pu of Cy such that
— Lg = Lyb;

— sq = sub;
— % pGg = pH, or
* pa = pu.q for some nonempty q, the subterm uyg at position Ly.sg.pu of Cy is
variable-headed, and ugf is nonfunctional; and
— given substitutions o and ¢ with x6 = xo( for all variables x in Cy, Ly.sy.py is eligible
in Cg w.r.t. o and hsel.

Proof. Let Lg be a literal in Cq that is (strictly) eligible w.r.t. G(hsel, N). By the definition
of eligibility (Definition 2.15), there are two ways to be (strictly) eligible:

— L is selected by G(hsel, N). By Definition 4.25, there exists a literal Ly selected by hsel
such that Lg = Ly#. By Definition 2.15, Ly is (strictly) eligible in Cy w.r.t. o because it
is selected.

— There are no selected literals in Cg and Lg is (strictly) maximal in Cg. By Definition 4.25,
there are no selected literals in Cy. Since Cg = Cuf = Cpo(, by Lemma 4.27, there
exists a literal Ly € Cy such that Lyo is (strictly) maximal in Cyo. By Definition 2.15,
Ly is (strictly) eligible in Cy[S] w.r.t. o.

For the second part of the lemma, let Lg.sg.pg be a green position of Cg that is eligible
w.r.t. G(hsel, N). By Definition 2.15, the literal Lg is of the form sg & tg with sg > tg
and L¢ is either negative and eligible or positive and strictly eligible. By the first part of
this lemma, there exists a literal Ly in Cy that is either negative and eligible or positive and
strictly eligible in Cy w.r.t. o and hsel such that Lg = Lyf. Then Ly must be of the form
s~ tyy with sg = sgf and tg = tpf. Since sg > tq, we have s 2 ty. By Definition 2.15,
every green position in Ly.sy is eligible in Cyp w.r.t. ¢ and hsel.

It remains to show that there exists a green position Ly.sy.pyg in Cy such that either
PG = pH or pg = pu.q for some nonempty ¢, the subterm uy at position Ly.sp.pg of Ch is
variable-headed, and uy6 is nonfunctional.

Since pg is a green position of sg = spf, position pg must either be a green position
of sip or be below a variable-headed term in sy. In the first case, we set py = pg. In the
second case, let upg be that variable-headed term and let py be its position. Then pyg.q = pg
for some nonempty q. Moreover, since pg is a green position of sg, the subterm of sg at
position py, which is ugf, cannot be functional. []

Lemma 4.29 (Lifting Lemma). Let N C (g be saturated up to redundancy w.r.t. HInf~hset,
Then G(N) is saturated up to redundancy w.r.t. GInfG(hselLN),



34 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Proof. Let g be a GInf inference from G(N). We must show that ¢ € GRed;(G(N)). By
Definitions 4.22, 4.15, 4.11, and Lemma 4.5, it suffices to show that

F(G(N)) Eox F(concl(tg)) if g is a DIFF inference, or

{E € F(G(N)) | E <g F(mprem(ta))} Fox F(concl(tg)) if g is some other inference.

(*)
One strategy that we will apply below is to construct an inference ¢y such that the prefixes of
ty1 and ¢ match up to the prefixes G and FLUID and to construct substitutions 61,...,0,41
such that applying 61, ..., 0, to prems(uy) yields prems(ic) and applying 0,41 to concl(iy)
yields concl(tg). (xx)

By Lemmas 4.21 and 4.14, F(J(1q)) is a valid FInf=-7(G(hsebN)) ipference, By
Lemma 4.5, = sg0=>4 and F(J(G(hsel, N))) = F(G(hsel, N)). Moreover, Lemma 4.5 tells
us that F(J(tq)) can also be obtained by applying F directly to premisses and conclusion
of vg. Therefore, iy is rooted in FInf for (61,...,0m+1) (Definition 2.24). By saturation of
N up to redundancy w.r.t. HInf, v is redundant and thus (x) by Definition 2.25.

GSuUP: Assume that tq is a GSUP inference
D¢
——
Dg Vitg =ty Cglte :

GSup
D¢ v Calte>

Let Cyg = g]f,l (Cg), and let 0 be a grounding substitution such that Cg = Cy6. By

condition 4 of GSuUP, the position Lg.sq.pg of tq is eligible in Cg. By Lemma 4.28, there

exists a green position Ly.sg.pg of Cy such that

— Lg = Lnpb;

— sq = sub;

— given substitutions ¢ and ¢ with x6 = xo( for all variables x in Cy, Ly.sg.pu is eligible
in Cyg w.r.t. o and hsel (condition 5 of SUP or FLUIDSUP);

and one of the following cases applies:
CASE 1: pg = pH-

CASE 1A: The subterm at position Lyg.sy.pg of Cy is a variable x and no occurrence of x
is inside of a parameter in Cy.

Since free De Bruijn indices cannot occur in parameters, x does not occur in parameters
in Cuf[z — x] either. By condition 1 of GSUP, t¢ is nonfunctional and so x is nonfunctional.
Thus, all occurrences of & in Cyf[z — ] are in green positions. Thus, Cuf[z — t¢] results
from Cxf = Cg by replacing tg with ¢ at green positions. Thus, by the Zg-analogue of
Lemma 4.3, 7 (Cq) results from F(Cub[z — t]) by replacing ¥ (tc) with ¥ (t;). Therefore,
{F(ta) = F(tg), F(Cublz — tg])} For F(Cq) and thus

{7 (Da), F (Cublz — ta])} For F(Dg V Calte)

By condition 3 of GSup, Dg < mprem(ig), and thus F(Dg) <5 F(mprem(ig)). By
Condition 2 of GSUP, tq > t, and thus by (02)r, F(mprem(ic)) = F(Cublx — tc]) =¢
F (Cubz — t]). Therefore,

{E € F(GIN)) | E =g F(mprem (1))} Fox F(concl(iq))
and thus (x).
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CASE 1B: The subterm ug at position Ly.sg.pg of Cy is not a variable or there exists an
occurrence of that variable inside of a parameter in Cy.

Then we construct a SUP inference g from Dy = gg,l(Dg), and Cy = g&l(Cg). Let p
be the grounding substitution such that Dg = Dgp and let 6 be the grounding substitution
such that Cq = Cy6.

The assumption of this cases matches exactly condition 2 of Sup.

Condition 5 of GSUP states that tq =~ t(; is strictly eligible in Dg. Let Dy = Dy V
tn ~ t}y, where ti & t}y is the literal that Lemma 4.28 guarantees to be strictly eligible w.r.t.
any suitable o (condition 6 of SUP), with tgp = tg and typ = ti;. Condition 6 of GSuP
states that if ¢, is Boolean, then t{; = T. Thus, there are no selected literals in Dg. By
Definition 4.25, it follows that there are no selected literals in Dy (condition 7 of Sup).

Since Lg = Ly, sqg = suf, and pg = p, we have upf = tq = tip. Since the variables
of Dy and Cpy are disjoint, there exists a subsitution # U p that matches 6 on all variables of
Cy and p on all variables of Dy;. This substitution is a unifier of ¢ty = uyy. By Definition 2.11,
there exists a unifier 0 € CSU(tg = ug) and a substitution ¢ such that xo( = z(0 U p) for
all variables z in Cy or Dy (condition 1 of Sup).

Since tg is nonfunctional by condition 1 of GSUP, and since upo( = upl = tg, ugo is
nonfunctional (condition 3 of Sup).

By condition 2 of GSUP, tyo( = tg > t = tyo¢, and thus by Lemma 4.26, tyo A tho
(condition 4 of Sup).

Moreover, concl(tyy)¢ = concl(tg). Thus, we can apply (k).

CASE 2: pg = pu.q for some nonempty ¢, the subterm upg at position Ly.sy.py of Cy is
variable-headed, and uy6 is nonfunctional.

CASE 2A: The subterm at position Lyg.sy.pg of Cy is a variable and no occurrence of that
variable is inside of a parameter in Cy.
Then we can proceed as in Case la.

CASE 2B: The subterm upg at position Lyg.sg.pg of Cy is not a variable or there exists an
occurrence of that variable inside of a parameter in Cy.

Then we construct a FLUIDSUP inference ¢y from Dy = Gx' (Dg), and Cy = G5 (Cg).
Let p be the grounding substitution such that Dg = Dgp and let 6 be the grounding
substitution such that Cq = Cy6.

The assumptions of this case imply condition 2 of FLuIDSUP. We define Dy, t, and
t}; in the same way as in Case 1b. This ensures condition 6 and condition 7 of FLUIDSUP.

Let z be a fresh variable (condition 8 of FLUIDSUP). Let v = A (upf)<n>,, where n is
the appropriate De Bruijn index to refer to the initial A\. We define ¢’ by 260" = v, 20’ = xp
for all variables z in Dy and 26’ = 20 for all other variables x. Then, (z ty)0' = v (tup) =
vig = (unb)<tc>q = und = unl’. So ¢’ is a unifier of z ty and uy. Thus, by definition of
CSU (Definition 2.11), there exists a unifier o € CSU(z tig = uy) and a substitution ¢ such
that zo¢ = z6; for all relevant variables = (condition 1 of FLUIDSUP).

The assumption of Case 2 tells us that uyf = ugo( is nonfunctional. It follows that
ugo is nonfunctional (condition 3 of FLUIDSUP).

By condition 2 of GSUP, tyo( = tg > t = tyo(, and thus by Lemma 4.26, tyo A tho
(condition 4 of FLUIDSUP).

By condition 2 of GSUP, tup = tq # t; = typ. Thus, (ztn)oC = v(tup) = unb<tupdq #
upl<{typ>q = v (typ) = (2 ty)oC. So, (zty)o # (2 tu)o (condition 9 of FLUIDSUP).
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Since zo( = v and v # A 0 because ¢ is nonempty, we have zo # A 0 (condition 10 of
FLuipSup).

Moreover, concl(tn)¢ = (D V Cu<z tyopy)o¢ = D V Cal(unb)<te>eopy = D V
Calteope = concl(ta). Thus, we can apply (xx).

GEQRES: Assume that g is a GEQRES inference
Ca
——
Cé; V ug % ug
Ca
Let Cy = g&l(Cg), and let 8 be a grounding substitution such that Cq = Cy6. Condition 1
of GEQRES states that ug % ug is strictly eligible in Cq. Let Cy = Cj; V un % ujy, where
up % uyy is the literal that Lemma 4.28 guarantees to be strictly eligible w.r.t. any suitable o
(condition 2 of GEQRES), with upf = ug and w0 = ug. Then 6 is a unifier of uy and ujy,
and thus there exists a unifier 0 € CSU(un = u};) and a substitution ¢ such that zo¢ = 26

for all variables  in Cy (condition 1 of GEQRES).
Moreover, concl(t)¢ = concl(tg). Thus, we can apply (xx).

GEQRES

GEQFAcCT: Assume that tq is a GEQFACT inference
Ca

Ciq V ug = vg V ug ~ vg

GEQFaAcT
CGq Vv #vg V ug = vg

Let Cy = g&l(Cg), and let 0 be a grounding substitution such that Cq = Cy6. Condition 1
of GEQFACT states that ug ~ vg is maximal in Cqg. Let ug ~ vg be the literal in Cqg
that Lemma 4.27 guarantees to be strictly maximal w.r.t. any suitable o (condition 2 of
EQFAcCT), with ugf = ug and vgf = vg. Choose Cf;, uy, and vj; such that Cy = Cf; V
upy = vy Voun & vg, Ch = C, uyb = ug, and vj0 = vg,.

Then 6 is a unifier of ugy and ufy, and thus there exists a unifier o € CSU(up = uf;) and
a substitution ¢ such that zo¢ = z6 for all variables x in Cy (condition 1 of EQFACT).

By condition 2 of GEQFACT, there are no selected literals in C¢ and thus there are no
selected literals in Cy (condition 3 of EQFACT).

By condition 3 of GEQFACT, upo( = ug > vg = vpo(. By Lemma 4.26, upo A vgo
(condition 4 of EQFACT).

Moreover, concl(tyr)¢ = concl(tg). Thus, we can apply (k).

GCLAUSIFY: Assume (g is a GCLAUSIFY inference

Ca
—_——

Ci V sg ~tg
Cé;\/DG

with 7q being the type and ug and vg being the terms used for condition 2. Let Cy =
1(Cg), and let 0 be a grounding substitution such that Cg = Cy6.

Condition 1 of GCLAUSIFY is that sg = tq is strictly eligible in Cg. Let Cxy = Cfy V
sg ~ ty, where sy = ty is the literal that Lemma 4.28 guarantees to be strictly eligible
w.r.t. any suitable o (condition 2 of CLAUSIFY), with sgf = sg and tyf = tg.

We distinguish two cases:

CASE 1: sy is a variable and no occurrence of that variable is inside of a parameter in Cy.

GCLAUSIFY




SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 37

Then we define substitutions 1 and 6, that coincide with 8, except for mapping
sg to T and L, respectively. Since the semantics of =) interpret Booleans, we have
{F(Cubt), F(Cubl)} For F(Cub) because sy does not appear in parameters in Cy. By
(O4)r and (O2)r, F(Cubt) < F(Cubyr) < F(Cub). Therefore, we can apply (x).

CASE 2: spg is not a variable or there exists an occurrence of that variable inside of a
parameter in Cy (condition 3 of CLAUSIFY). Then we construct a corresponding CLAUSIFY
inference tg.

Comparing the listed triples in GCLAUSIFY and CLAUSIFY, we see that there must
be a triple (syy, tyy, Du) listed for CLAUSIFY such that (syp, tip, Dup) = (sa,ta, Dg) with
p={a— 1,2 — ug,y — vg} is the triple used for ¢ (condition 4 of CLAUSIFY).

Moreover, we observe that sgf = sg = spyp and ¢ty = tg = t;p. Thus the substitution
¢ mapping all variables  in sj; and ¢}; to xp and all other variables = to xf is a unifier of
su = sty and ty = t};. So there exists a unifier 0 € CSU(sy = sy, ty = ;) (condition 1 of
CLAUSIFY) and a substitution ¢ such that xo¢ = z6’ for all variables x in Cy.

Moreover, it follows that concl(ty)( = concl(tg). Thus, we can apply (xx).

GBooLHoI1ST: Analogous to GSUP, using the substitutions 6+ and 6, as in Case 1 of
GCLAUSIFY.

GLoOBHOIST: Analogous to GBOOLHOIST.
GFALSEELIM: Analogous to GEQRES.
GARGCONG: Analogous to GEQRES.
GEXT: Assume that (¢ is a GEXT inference
Caluay

Calwe> V ug difF<T(;, U(;>(U,G, w(;) % we diff(T(;, Ug>(uG, wg)

IGEXT

Let Cy = gjgl (Cg), and let 0 be a grounding substitution such that Cg = Cy6. By

condition 1 of GEXT, the position Lg.sq.pg of ug is eligible in Cq. By Lemma 4.28, there

exists a green position Ly.sp.pu of Cy such that

- LG = LHQ;

— sq = sub;

— given substitutions ¢ and ¢ with 6 = xo( for all variables x in Cy, Ly.sg.pu is eligible
in Cy w.r.t. o and hsel (condition 3 of EXT/condition 7 of FLUIDEXT);

and one of the following cases applies:

CASE 1: pg = pg. Then we construct an EXT inference ¢y from Cy.

Let ug be the subterm of Cy at position Ly.sy.py. Since pg = pu, we have ugf = ug.
By condition 2 of GEXT, ug is functional and thus there exists a most general type
substitution ¢ such that ugo is functional (condition 1 of EXT). By definition of ‘most
general’, there exists a substitution ¢ such that xo( = x6 for all variables x in Cf.

Let y be a fresh variable of the same type as upo (condition 2 of EXT). Let ¢’ = [y —
wg]. Then, concl(ty)(’ = concl(tg). Thus, we can apply (xx).

CASE 2: pg = pu.q for some nonempty ¢, the subterm uyg at position Ly.sy.py of Cy is
variable-headed, and uy6 is nonfunctional.

Then we construct a FLUIDSUP inference ¢y from Oy = Gy'(Cq).

The assumption of this case implies condition 1 of FLUIDEXT.
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Let a and 8 be fresh type variables. Let x and y be fresh variables of type a — 3,
and let z be a fresh variable of function type from o — 3 to the type of uy (condition 3 of
FLUIDEXT).

Let v = A (unf)<{n>q, where n is the appropriate De Bruijn index to refer to the initial .
We define a substitutionf’ that coincides with 6 on all variables except af’ = 7, B0’ = vg,
20" = v, 26 = ug, and Y0’ = wg. Then, (2 2)0' = vug = (upb){uc>q = upl = unb’. So ¢’
is a unifier of z x and uy. Thus, by definition of CSU (Definition 2.11), there exists a unifier
o € CSU(z = uy) and a substitution ¢ such that zo¢ = 26’ for all relevant variables x
(condition 4 of FLUIDEXT).

The assumption of Case 2 tells us that upf = uyo( is nonfunctional. It follows that
ugo is nonfunctional (condition 2 of FLUIDEXT).

By condition 4 of GEXT, ug # wg. Thus, (z z)o( = vug = (unb)luc>q #
(upb)<weyq = vwg = (2y)oC. So, (2 x)o # (2 y)o (condition 5 of FLUIDEXT).

Since zo¢ = v and v # A 0 because ¢ is nonempty, we have zo # A 0 (condition 6 of
FLUIDEXT).

Moreover,

concl(un)¢ = (Culz y> V z diff(a, B)(x, y) # y diff (v, B)(z, y))o¢
= Cg<(uH9)<w(;>q>pH V ug difF<T(;, U(;>(UG, w(;) % wa diff(T(;, U(;>(’LLG, ’LU(;)
= Cc,<wg>pG V ug diff<7’(;, Uc,>(uG, 'LUG) 7”’3 we diff<7‘(;, Ug>(uG, w(;)
= concl(ta)

Thus, we can apply ().

GDIFF: Assume that g is a GDIFF inference

GDIFF

w diff (1, v)(u, w) % w diff (T, V)(u,w) Vus~ws
Then we use the following DIFF inference ty:

DIFF

y (diff(a, B)(y. 2)) # = (diff (v, B)(y,2)) V y o ~ 2 2

Clearly, concl(tg)f = concl(ig) for 0 = {a— 7,6 — v,y — u,z — w,z — s}. Thus, we
can apply (xx). ]

4.4. Model Construction. In this subsection, we construct models of saturated clause
sets, starting with a first-order model and lifting it through the levels. Using the results of
Section 4.3, we prove a completeness property for each of the calculi that roughly states the
following. For any saturated set N, that does not contain the empty clause, there exists a
model of N.

Finally, in level H, we bring everything together by showing that the constructed model
is also a model of Ny. It follows that the calculus HInf is refutationally complete.
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4.4.1. First-Order Levels. In this subsubsection, let > be an admissible term order for FInf
(Definition 4.6), and let fsel be a selection function on Gp.

The completeness proof for FInf relies on constructing a first-order term rewrite system.
For any first-order term rewrite system R, there exists a first-order interpretation, which
we also denote R, such that R |=¢, s ~ t if and only if s <3} t. Formally, this can be
implemented by a first-order interpretation whose universe for each type 7 consists of the
R-equivalence classes of ground terms of type 7.

Definition 4.30 (Ry). Let N be a set of ground first-order clauses with L ¢ N. By
well-founded induction, we define term rewrite systems R, and A, for all ground clauses and
ground terms e € 7p U (¢ and finally a term rewrite system Ry. As our well-founded order
on Tr U (¥, we employ our term and clause order >. To compare terms with clauses, we
define a term s to be larger than a clause C' if and only if s is larger than every term in C.
Formally, this can be defined using the clause order by Bachmair and Ganzinger [1, Sect. 2.4]
and encoding a term s as the multiset {{{s}}}.

(A1) LoGICAL BOOLEAN REWRITES: Given a term s, let Ay = {s — ¢} if
— (s,t) is one of the following:

(-L,T) (TAT,T) (TVT,T) (T—>T,T) (us u,T)

(+T,L1) (TALL (TVLT (T=L1) (u~"ov,L) withuo
(LAT,L) (LVT,T) (LoT.T) (ug ul)
(LAL 1) (Lvdl 1) (L—=>L1,7T) (ugt™ v, T) with u # v

— s is irreducible w.r.t. R;.
(A2) BACKSTOP BOOLEAN REWRITES: Given a clause C, let A¢g = {s — L} if
—(C=s~1;
- S ¢ {J-7T}7
— s is irreducible w.r.t. R¢.
(A3) FUNCTION REWRITES: Given a clause C, let A¢c = {F(u) — F(w)} if
— C = F(u) = F(w) for functional terms u and w;
= F(u) = F(w)
— F(udiffy)) <5, F(vdiffy)) for all s,¢;
— F(u) is irreducible w.r.t. Rc.
(A4) PRODUCED REWRITES: Given a clause C, let A¢ = {s — t} if
(CC1) C ="V s =t for some clause C’ and terms s and ¢;
(CC2) s is nonfunctional;
(CC3) the root of s is not a logical symbol;
(CC4) if t is Boolean, then t =T
(CC5) s = t;
(CC6) s~ t is maximal in C;
(CCT) there are no selected literals in C
(CC8) s is irreducible by Rc;
(CCY) R a1 C
(CClO) RC U {S — t} béfol .
In this case, we say that C produces s — ¢ and that C is productive.
(A5) For all other terms and clauses e, Let A, =

Let Re = Uf{e Af Let RN = UGETFUCF Ae.
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Lemma 4.31. The rewrite systems Rc and Ry do not have critical pairs and are oriented
by ~.

Proof. 1t is easy to check that all rules in Rc and Ry are oriented by >, using (O4)p.

To show the absence of critical pairs, suppose that there exists a critical pair s — ¢ and
s’ — t' in Ry, originating from A, and A, respectively, for some e, e’ € Tp U Cp. Without
loss, we assume e = €. Inspecting the rules of Definition 4.30, it follows that s = s’. By the
subterm property (O3)r, s cannot be a proper subterm of s’. So for the rules to be a critical
pair, s’ must be a subterm of s. But then s is not irreducible by A, C R, contradicting
the irreducibility conditions of Definition 4.30. L]

Lemma 4.32. The normal form of any ground Boolean term w.r.t. Ry is T or L.

Proof. Inspecting the rules of Definition 4.30, in particular (CC3), we see that T and L are
irreducible w.r.t. Ry.

It remains to show that any ground Boolean term s reduces to T or L. We prove the
claim by induction on s w.r.t. >=. If s =T or s = L, we are done. Otherwise, consider the
rule (A2) for C = s ~ L. Either s is reducible by R¢ or (A2) triggers, making s reducible
by A¢. In both cases, s is reducible by Ry. Let s’ be the result of reducing s by Ry. By
Lemma 4.31, s = s’. By the induction hypothesis, s’ reduces to T or L. Therefore, s reduces
to T or L. L]

Lemma 4.33. For all ground clauses C, if Rc FEgo1 C, then Ry [0 C.

Proof. We assume that Rc =g C. Then we have R¢ =g L for some literal L of C. It
suffices to show that Ry o L.

If L =t=~1is a positive literal, then ¢t <+ ¢'. Since Rc C Ry, this implies t <%  ¢'.
Thus, RN |:f01 L.

If L =t#tis a negative literal, then ¢ R t'. By Lemma 4.31, this means that ¢ and
t' have different normal forms w.r.t. Rc. Without loss of generality, let ¢ = t'. Let s &~ s’ be
the maximal literal in C' with s = s’. We have s = t if s &= s’ is positive and s = t if s &= 5
is negative. Hence, inspecting Definition 4.30, we see that the left-hand sides of rules in
Uesc Ae are larger than ¢. Since only rules with a left-hand side smaller or equal to t can
be involved in normalizing ¢ and ¢ and Rc U Uesc Ae = Ry, it follows that ¢ and t' have
different normal forms w.r.t. Ry. Therefore, ¢ %%N t" and Ry Eto L. ]

Lemma 4.34. If a clause C =C'V s~ t € (¢ produces s — t, then Ry W C'.

Proof. By (CC5) and (CC6), all terms in C' are smaller or equal to s. By (CC10), we have
Rc U {s — t} = C'. The other rules Ry \ (Rc U {s — t}) do not play any role in the truth
of C because their left-hand sides are greater than s, as we can see by inspecting the rules
of Definition 4.30, in particular the irreducibility conditions, and because Ry is confluent
and terminating (Lemma 4.31). So, Ro U {s — t} £ C implies Ry (o) C. ]

Lemma 4.35. Let u and w be higher-order ground terms of type 7 — v. If F (u) <% F(w),
then F (udiffy) <% F(wdiffly) for all s,t.

Proof. By induction over each rewrite step in ¥ (u) <%, F(w), it suffices to show the
following claim: If ¥ (u) =gy F(w), then F(udiffy}) <% F(w diff7)) for all s,t. Here, it
is crucial that s and ¢ are not necessarily equal to v and w.

By definition of ¥, since u is functional, F (u) = fun,. So ¥ (u) has no proper subterms,
and thus the rewrite step must happen at the root of ¥ (u). Inspecting the definition of Ry,
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we observe that the rewrite rule must originate from (A3). One of the conditions of (A3)
then yields the claim. []

Lemma 4.36. Let u and w be higher-order ground terms of type T — v. If T(udiffg’f) R
F(wdiffgy) for all s,t, then F (u) <5 F(w).

Proof. Let F(u') = F(u) gy and F (') = F(w) lgy. By applying Lemma 4.35 to
F(u) <k, F () and to F(w') <5, F(w), we have F (v’ diffy)) <% F(w' diff(y) for all
s, t.

We want to show that ¥ (u) <% F(w)—ie, that F(u) = F(v'). To derive a
contradiction, we assume that ¥ (u') # F(w’). Without loss of generality, we may assume
that F(u') = F(w'). Then, using (O5)p, all conditions of (A3) are satisfied for the rule
F(u') — F(w'), contradicting the fact that ¥ (u') is a normal form. ]

Lemma 4.37. Ry is a |=o)-interpretation.

Proof. We must prove all conditions listed in Section 2.6.

— By Lemma 4.32, the Boolean type has exactly two elements, namely the interpretations
of T and L. The rule (Al) ensures that the symbols =, A, V, =, &, %" are interpreted
as the corresponding logical operations. Note that R never contains any rules rewriting s
because s is smaller than any clause containing s. So s can be reducible w.r.t. Rs only
when one of its proper subterms is reducible. Since every term has a normal form, adding
rules only for the irreducible terms is sufficient.

— By Lemma 4.5, we have ¥ (J(u) diffy}) = F (u diff(,v)(s, 1)) for all u, s,t € Tgrouna (XnH)-
Since 7 is a bijection on ground terms, Lemma 4.36 proves the extensionality condition in
Section 2.6.

— The argument congruence condition in Section 2.6 follows from Lemma 4.35 in the same
way. []

We employ a variant of Bachmair and Ganzinger’s framework of reducing counter-
examples [2, Sect. 4.2]. Let N C Cp with L & N. A clause Cy € ( is called a counterezample
if Ry o1 Co. An inference reduces a counterexample Cy if its main premise is Cp, its side
premises are in N and true in Ry, and its conclusion is a counterexample smaller than Cj.
An inference system has the reduction property for counterexamples if for all N C (¢ and all
counterexamples Cy € N, there exists an inference from N that reduces Cy.

Lemma 4.38. Let C' € N be a counterexample. Let L be a literal in C' that is eligible and
negative or strictly eligible and positive. We assume that the larger side of L is reducible by
a rule s — s’ € Ro. Then the inference system FInf reduces the counterezample C.

Proof. Let p be the position of C that is located at the larger side of L and reducible by
s — 5. We make a case distinction on which case of Definition 4.30 the rule s — s’ originates
from:

— (A1) Then the root of s is a logical symbol and s ¢ {T,L}. By Lemma 4.32, Ry reduces

sto T orto L.

— First consider the case where the position p in C is in a literal of the form s = T or
s ~ 1. Then FCLAUSIFY is applicable to C' and the conclusion of this inference is
smaller than it. Moreover, the conclusion is equivalent to C' by Lemma 4.37.

— Otherwise, we apply either PFBOOLHOIST (if s reduces to L) or PFLooBHOIST (if
s reduces to T). In both cases, the conclusion of the inference is smaller than C.
Moreover, the conclusion is equivalent to C' by Lemma 4.37.
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— (A2) Then Ry reduces s to L and s ¢ {T,L}. Due to the presence of the rule s — L in
Re, C must be larger than s &~ L. So, since p is eligible in C, this position cannot be in a
literal of the form s ~ T. It cannot be in a literal of the form s &~ L either because s ~ L
is true in Ry. So we can apply FBOOLHOIST to reduce the counterexample, again using
Lemma 4.37.

— (A3) Then s is functional and reducible w.r.t. Ry. Consider the normal form s g,
of s wrt. Ry. Let u = F7'(s) and w = F~'(s {ry). Then F(u) <% F(w). By
Lemma 4.35, ¥ (u diff}7,) <% F(w diff7,). Since Ry is oriented by -, we have
F(u) =5 > s py= F(w). Thus, we can apply FEXT to reduce the counterexample,
using Remark 4.7. Given the above properties of Ry, the conclusion of this inference
is equivalent to the premise. It is also smaller than the premise by (O5)r and because
F(u) = F(w).

— (A4) Then some clause D V s &~ s’ smaller than C produces the rule s — s’. We claim
that the counterexample C' is reduced by the inference

Dvs=~s Cls]
DV Cld]

This superposition is a valid inference:

— s is nonfunctional by (CC2).

— We have s > s’ by (CC5).

— DV s~ s < C[s] because D V s = s’ produces a rule in R¢.

— The position p of s in C' is eligible by assumption of this lemma.

— The literal s ~ s’ is eligible in D V s &~ ¢’ by (CC6) and (CC7). It is strictly eligible
because if s & s’ also occurred as a literal in D, we would have Rpy s U{s — §'} o1 D,
in contradiction to (CC10).

— If ¢’ is Boolean, then s’ = T by (CC4).

As DV s = ¢ is productive, Ry [~g1 D by Lemma 4.34. Hence D V C'[¢] is equivalent

to C'[s'], which is equivalent to C'[s] w.r.t. Ry. It remains to show that the new counter-

example D V C'[¢] is strictly smaller than C. Using (O2)p, C[s'] < C because s’ < s and

D < C because DV s ~ s’ < C. Thus, the inference reduces the counterexample C. []

FSup

Lemma 4.39. The inference system FInf has the reduction property for counterexamples.

Proof. Let C' € N be a counterexample—i.e., a clause that is false in Ry. We must show
that there is an inference from N that reduces C'; i.e., the inference has main premise C,
side premises in N that are true in Ry, and a conclusion that is a smaller counterexample
than C.

Let L be an eligible literal in C. We proceed by a case distinction:

CASE 1: L is of the form s % s'.

— Case 1.1: s = s’. Then FEQRES reduces C.

— Case 1.2: s # s’. Without loss of generality, s > s’. Since Ry g1 C, we have Ro [t C
by Lemma 4.33. Therefore, Ro o1 s % 8" and Re [t § & s’. Thus, s must be reducible
by R because s = s’. Therefore, we can apply Lemma 4.38.

CASE 2: L is of the form s ~ §'. Since Ry 5o C, we can assume without loss of generality

that s = 5.

— Case 2.1: L is eligible, but not strictly eligible. Then L occurs more than once in C. So
we can apply FEQFACT to reduce the counterexample.
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— Case 2.2: L is strictly eligible and s is reducible by Ro. Then we apply Lemma 4.38.

— Case 2.3: L is strictly eligible and s = L. Then, since s > ', we have ' = T by (O4)p.
So, PFFALSEELIM reduces the counterexample.

— Case 2.4: L is strictly eligible and s is functional. Then we apply FARGCONG to reduce the
counterexample. The conclusion is smaller than the premise by (O5)r. By Lemma 4.36,
there must be at least one choice of u and w in the FARGCONG rule such that the
conclusion is a counterexample.

— Case 2.5: L is strictly eligible and s # L is nonfunctional and not reducible by Rc.
Since Ry [~fo1 C, C cannot be productive. So at least one of the conditions of (A4) of
Definition 4.30 is violated. (CC1), (CC2), (CC5), (CC8), and (CC9) are clearly satisfied.

For (CC3), (CC4), (CC6), and (CCT7), we argue as follows:

— (CC3): If s were headed by a logical symbol, then one of the cases of (Al) applies.
The condition in (Al) that any Boolean arguments of s must be T or L is fulfilled by
Lemma 4.32 and the fact that the rules applicable to subterms of s in Ry are already
contained in Rs. So (Al) adds a rewrite rule for s to R¢, contradicting irreducibility
of s.

— (CC4): If s’ were a Boolean other than T, since s > s, we would have s # T, L by
(O4)g. Moreover, s’ = L, and thus C > s & L. Since s is not reducible by R, is is also
irreducible by R__ | C Rc. So (A2) triggers and sets A__ | = {s — L}. Since s is not
reducible by R¢c, we must have C' = s &~ L. But then C istrue in Ry, a contradiction.

— (CC6): By (CC4), L cannot be selected and thus eligibility implies maximality.

— (CCT): By (CC4), L cannot be selected. If another literal was selected, Ly would not
be eligible.

So (CC10) must be violated. Then Rc U {s — s’} o C’, where C’ is the subclause

of C' with L removed. However, R¢ g, C, and therefore, R g C'. Thus, we must

have C' = C” V r = t for some terms r and ¢, where Rc U {s — §'} Ft1 7 =~ t and

R fefol 7 = t. So r # t and without loss of generality we assume r > t. Moreover

s — s’ must participate in the normalization of r or ¢t by Rc U {s — s’'}. Since s = ¢’ is

maximal in C' by (CC6), r < s. So the rule s — s’ can be used only as the first step in

the normalization of r. Hence r = s and R¢ o 8 = t. Then FEQFACT reduces the
counterexample. []

Using Lemma 4.39 and the same ideas as for Theorem 4.9 of Bachmair and Ganzinger’s
framework [2], we obtain the following theorem:

Theorem 4.40. Let N be a set of closures that is saturated up to redundancy w.r.t. FInf
and FRedy, and L ¢ N. Then Ry [=ox N.

Proof. By Lemma 4.37, it suffices to show that Ry =, N. For a proof by contradiction, we
assume that Ry [“f) N. Then N contains a minimal counterexample, i.e., a clause C' with
Ry £l C. Since Finf has the reduction property for counterexamples by Lemma 4.39,
there exists an inference that reduces C—i.e., an inference ¢ with main premise C, side
premises in N that are true in Ry, and a conclusion concl(:) that is smaller than C' and
false in Ry. By saturation up to redundancy, ¢ € FRed;. By Definition 4.11, we have
{E € N | E < C} Eox concl(t). By minimality of the counterexample C, the clauses
{E € N | E < C} must be true in Ry, and it follows that concl(¢) is true in Ry, a
contradiction. ]
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4.4.2. Indexed Ground Higher-Order Level.

In this subsubsection, let > be an admissible term order for I/GInf (Definition 4.8),
let igsel be a selection function on (g, and let N C (g such that N is saturated up
to redundancy w.r.t. IGInf and L ¢ N. We write R for the term rewrite system Ry ()
constructed in the previous subsubsection w.r.t. =4 and ¥ (igsel). We write ¢t ~ s for
F(t) <% F(s), where t, s € Tgrouna (Z1)-

Our goal in this subsubsection is to use R to define a higher-order interpretation that is
a model of N. To obtain a valid higher-order interpretation, we need to show that s ~ st’
whenever 26 ~ z6’ for all x in s.

Lemma 4.41 (Argument congruence). Let s ~ s for s, s’ € Toround(21). Let u € Tgrouna (E1)-
Then su ~ s u.

Proof. Consider the following inference ¢:

IGDIFF
s diff;’g, % s diff;’:, Vsurs u
Since N is saturated, ¢ is redundant and thus #(N) = F(concl(t)). Hence R |= F (concl(t))
by Theorem 4.40 and Lemma 4.16.
By Lemma 4.35, R = F (s diff ) ~ (s diff ). It follows that R = F(su =~ s u).
Thus, su ~ s’ u. ]

The following lemma and its proof are essentially identical to Lemma 54 of Bentkamp et
al. [5]. We have adapted the proof to use De Bruijn indices, and we have removed the notion
of term-ground and replaced it by preprocessing term variables, which arguably would have
been more elegant in the original proof as well.

Lemma 4.42. Let s € T(X1), and let 0, 0" be grounding substitutions such that x6 ~ 6’
for all variables x and o = af’ for all type variables o. Then s ~ s6’.

Proof. In this proof, we work directly on A-terms. To prove the lemma, it suffices to prove it
for any A-term s € T*(%;). Here, for t1,t5 € Tg’l\round(EI), the notation ¢; ~ t2 is to be read
as t1lg ~ t2]g because ¥ is defined only on S-normal A-terms.

Without loss of generality, we may assume that s contains no type variables. If s does
contain type variables, we can instead use the term sy resulting from instantiating each
type variable « in s with af. If the result holds for the term sg, which does not contain
type variables, then sgf ~ sof/, and thus the result also holds for s because s = spf and

50" = sob’.

DEFINITION We extend the syntax of A-terms with a new polymorphic function symbol
@ : MNa. @« - a = a. We will omit its type argument. It is equipped with two reduction
rules: ®ts —tand Bts— s. A fD-reduction step is either a rewrite step following one of
these rules or a S-reduction step.

The computability path order =cpo [9] guarantees that

— @ ts—cpo s by applying rule @Qp>;

— @ ts—cpot by applying rule Q> twice;

— (At) s =cpo t{0 — s} by applying rule @Qf5.

Since this order is moreover monotone, it decreases with S@-reduction steps. The order is
also well founded; thus, f@®-reductions terminate. And since the S@®-reduction steps describe
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a finitely branching term rewriting system, by Kénig’s lemma [16], there exists a maximal
number of f@-reduction steps from each A-term.

DEFINITION We introduce an auxiliary function 8 that essentially measures the size of a
A-term but assigns a size of 1 to ground A-terms.

1 if s is ground or if s is a variable
8(s) =q1+38(t) if s is not ground and has the form A ¢
8(t) + 8(u) if s is not ground and has the form ¢ u

We prove s ~ s’ by well-founded induction on s, #, and 6" using the left-to-right
lexicographic order on the triple (n1(s),n2(s),n3(s)) € N*, where
— ni(s) is the maximal number of S@-reduction steps starting from so, where o is the
substitution mapping each variable z to & z6 x6’;
— ng(s) is the number of variables occurring more than once in s;

— n3(s) = 8(s).
CASE 1: The A-term s is ground. Then the lemma is trivial.

CASE 2: The A-term s contains k > 2 variables. Then we can apply the induction hypothesis
twice and use the transitivity of ~ as follows. Let x be one of the variables in s. Let
p = {x — 20} the substitution that maps = to xf and ignores all other variables. Let
P =0z~ xl].

We want to invoke the induction hypothesis on sp and sp’. This is justified because so
@-reduces to spo and to sp'o, for o as given in the definition of ny. These &-reductions have
at least one step because x occurs in s and k > 2. Hence, ny(s) > ni(sp) and ni(s) > ny(sp’).

This application of the induction hypothesis gives us spf ~ spf’ and sp’6 ~ sp'6’. Since
spf = s6 and sp'60’ = sb, this is equivalent to sf ~ spf’ and sp’0 ~ s6’. Since moreover
spb’ = sp'f, we have sf ~ s’ by transitivity of ~. The following illustration visualizes the
above argument:

VAVIRVAN'

s ~ spbf = spf ~ sO
IH

IH

CASE 3: The A-term s contains a variable that occurs more than once. Then we rename
variable occurrences apart by replacing each occurrence of each variable x by a fresh variable
x;, for which we define z;6# = 26 and z;6' = x6’. Let s’ be the resulting A-term. Since
so = s'o for o as given in the definition of n;, we have ni(s) = ni(s’). All variables
occur only once in s’. Hence, na(s) > 0 = na(s’). Therefore, we can invoke the induction
hypothesis on s’ to obtain s’6 ~ s’'¢#’. Since sf = s'6 and st/ = s'¢/, it follows that s ~ s’.

CASE 4: The A-term s contains only one variable x, which occurs exactly once.

CASE 4.1: The M-term s is of the form f(7)¢ for some symbol f, some types 7, and some
A-terms ¢. Then let u be the M\-term in ¢ that contains . We want to apply the induction
hypothesis to u, which can be justified as follows. For ¢ as given in the definition of nq,
consider the longest sequence of f®-reductions from uo. This sequence can be replicated
inside so = (f(7)t)o. Therefore, the longest sequence of S&-reductions from so is at least
as long—i.e., n1(s) > ni(u). Since both s and u have only one variable occurrence, we have
na(s) = 0 = na(u). But ng(s) > n3(u) because u is a nonground subterm of s.
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Applying the induction hypothesis gives us uf ~ uf’. By definition of F, we have
F(F(F) 1)) =T F(t0) and analogously for ', where m is the length of . By congruence of
~ in first-order logic, it follows that s ~ sf'.

CASE 4.2: The A-term s is of the form z ¢ for some A-terms ¢. Then we observe that, by
assumption, x6 ~ x6’. Since x occurs only once, t are ground. Then 20t ~ z6’ t by applying
Lemma 4.41 repeatedly. Hence s = 260t and s = 260’ t, and it follows that sf ~ s6'.

CASE 4.3: The A-term s is of the form A u for some A-term u. Then we observe that to
prove sf ~ s, by Lemma 4.36, it suffices to show that s diffsg 590 ~ 56’ diffsg 5. Via
[-conversion, this is equivalent to v8 ~ v8’, where v = u{0 — diffs9 5o }. To prove v0 ~ v8’,
we apply the induction hypothesis on v.

It remains to show that the induction hypothesis applies on v. For ¢ as given in the
definition of ny, consider the longest sequence of S@-reductions from vo. Since diffgg 4o/ is
not a A-abstraction, substituting it for 0 will not cause additional S&-reductions. Hence,
the same sequence of f@®-reductions can be applied inside so = (A u)o, proving that
n1(s) > ni(v). Since both s and v have only one variable occurrence, na(s) = 0 = na(v).
But n3(s) = 8(s) = 1+ 8(u) because s is nonground. Moreover, 8(u) = §(v) = ns(v). Hence,
n3(s) > ng(v), which justifies the application of the induction hypothesis.

CASE 4.4: The A-term s is of the form (A u) tg t for some A\-terms u, tg, and t. We apply
the induction hypothesis on s’ = {0 — to} ¢, justified as follows. For ¢ as given in the
definition of nq, consider the longest sequence of 3®-reductions from s’o. Prepending the
reduction so —g s'o to it gives us a longer sequence from so. Hence, ni(s) > ni(s’). The
induction hypothesis gives us s'6 ~ s’6’. Since ~ is invariant under S-reductions, it follows
that s ~ s6'. ]

Using the term rewrite system R, we define a higher-order interpretation J'¢ =
(UG, H{}(,;, J1G, £1G). The construction proceeds as in the completeness proof of the original
A-superposition calculus [5]. Let (U,J) = R; i.e., U is the universe for the first-order type 7,
and J is the interpretation function. Since the higher-order and first-order type signatures
are identical, we can identify ground higher-order and first-order types. We will define a
domain D, for each ground type 7 and then let U'S be the set of all these domains D,. We
cannot identify the domains D, with the first-order domains U, because domains D.. for
functional types 7 must contain functions. Instead, we will define suitable domains D.. and
a bijection &, between U, and D, for each ground type 7.

We define €, and D, in mutual recursion. To ensure well definedness, we must show that
&, is bijective. We start with nonfunctional types 7: Let D, = U,, and let &, : U, — D,
be the identity. Clearly, the identity is bijective. For functional types, we define

Dryo={0:Dr =Dy |Ts:7—=v.Vu:T. o(E-([F(w)]r)) = Eu ([F(su)]r)}
Ermu t Urssy = Dy
Eru([F (9)]R) (E([F (W]Rr)) = Eu([F (s u)]Rr)

To verify that this equation is a valid definition of €,_,, we must show that

— every element of U,_,, is of the form [ (s)] for some s € Tground(1);

— every element of D is of the form &, ([F (u)]y) for some u € Tground (X1);
— the definition does not depend on the choice of such s and u; and

— Ermu([F(9)]R) € Drsy for all s € Tground (X1)-
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The first claim holds because R is term-generated and ¥ is a bijection. The second
claim holds because R is term-generated and ¥ and &, are bijections. To prove the third
claim, we assume that there are other terms ¢t € Zground(X1) and v € Tground(X1) such
that [F(s)]p = [F ()] and &7 ([F(u)]z) = &+ ([F (v)]g)- Since &; is bijective, we have
[F(uw)]g =[F ()] g—ie., u~v. The terms s,t,u,v are in Tgound(X1), allowing us to apply
Lemma 4.42 to the term z y and the substitutions {z — s, y — u} and {z — t, y — v}.
Thus, we obtain s u ~ tv—i.e., [F(su)]p = [F(t v)] p—indicating that the definition of
&, above does not depend on the choice of s and u. The fourth claim is obvious from the
definition of D,_,, and the third claim.

It remains to show that &, is bijective. For injectivity, we fix two terms s,t €
Tground (1) such that for all u € Tground (X1), we have [F (s u)]p = [F (t u)] - By Lemma 4.36,
it follows that [F(s)]p = [F(t)]z, which shows that €,_,, is injective. For surjectivity,
we fix an element ¢ € D,_,,. By definition of D,_,,, there exists a term s such that
0 (E+([F (w)]Rr)) = Eu ([F(su)]p) for all u. Hence, &+, ([F (s)]g) = @, proving surjectiv-
ity and therefore bijectivity of £€,_,. Below, we will usually write € instead of €, since the
type 7 is determined by &.’s first argument.

We define the higher-order universe as U = {D. | 7 ground}. In particular, by
Lemma 4.37, this implies that D, = {0,1} € UC as needed, where 0 is identified with [L]
and 1 with [T]. Moreover, we define 3{?(&)(@;) = Dys) for all & € X4y, completing the
type interpretation of f]g} = (UG, 3{?) and ensuring that 3{}(,;(0) =D, ={0,1}.

We define the interpretation function J'“ for symbols f : Na,,. 7 by J'¢(f, Ds,.) =
E(LF (F(Dm)] ).

We must show that this definition indeed fulfills the requirements of an interpretation
function. By definition, we have (I1) J'¢(T) = &([T]y) = [Tl = 1 and (I12) §'9(1) =
E([L]g) = [L]g = 0.

Let a,b € {0,1}, up = L, and uy = T. Then, by Lemma 4.37,

(1) 3'%(A)(a,b)

F NI AF (wa)l gy [F (up)lr)
F(uq ANup)] ) = min{a, b}
\%

([F(
([7(
([F (ua V up)] g) = max{a, b}
([F(
([7(

(14) 3¢ (V)(a,b)
(15)  3°(=)(a)

) (1T (ua)]g)
ug)|g) = [F(nuad)]gp=1-a
(16) 39(=)(a,b) ([7 (ua = wp)] ) = max{1 —a, b}

(I7) Let D, € WS and o',V € D,. Since € is bijective and R is term-generated, there
exist ground terms u and v such that E([F (u)]z) = o’ and E([F (v)]gz) =V'. Then

3% (=, D7)(a', V) = E([F (R(T)] ) (ELF ()] p), E(LF (v)] ) = E([F (um(7) V)] )

which is 1 if ' = b’ and 0 otherwise by Lemma 4.37. (I8) Similarly J'%(%,D.)(d/,¥') = 0 if
a’ = b and 1 otherwise. This concludes the proof that JG is an interpretation function.
Finally, we need to define the designation function £'G, which takes a valuation & and
a A-expression as arguments. Given a valuation £, we choose a grounding substitution 6
such that Dy = &y (a) and E([F (20)] ) = &e(x) for all type variables a and all variables
x. Such a substitution can be constructed as follows: We can fulfill the first equation in a
unique way because there is a one-to-one correspondence between ground types and domains.
Since €!(&e(x)) is an element of a first-order universe and R is term-generated, there

SR

€
€
e
e
e
e
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exists a ground term s such that [[s]]% = & !(&we(r)). Choosing one such s and defining
z0 = F~1(s) gives us a grounding substitution § with the desired property.

Let L1G(&,At) = E([F((At)0)]z)- We need to show that our definition does not depend
on the choice of . We assume that there exists another substitution 6’ with the properties
Dagr = &ry(a) for all o and E([F (x0')]g) = &te(x) for all z. Then we have af = ab’ for
all a due to the one-to-one correspondence between domains and ground types. We have
[F(x0)]p = [F(20')]g for all x because € is injective. By Lemma 4.42 it follows that
[F(AO]z = [F((A))] 5, which proves that £ is well defined. This concludes the
definition of the interpretation J'¢ = (UG, H{S .36, £1G). Tt remains to show that J'C is
proper.

The higher-order interpretation 3¢ relates to the first-order interpretation R as follows:

Lemma 4.43. Given a ground A-term t € ‘Z‘g’\ (31), we have

round

[t = E([F (o) R)

Proof. The proof is adapted from the proof of Lemma 40 in Bentkamp et al. [7]. We proceed
by induction on ¢. If ¢ is of the form f(7), then

[tlyic = 3'°(f, D7)
= &([F(F(P)IR) = E([F(tLs)]R)

If t is an application t = t; to, where t; is of type 7 — v, then

[t1 t2] e = [t1]ge ([t2]gc)
= &rnu([F(t )R (E-([F(t2 )] R))
Def € Eu([F((t1t2)1p)]R)

If t is a A-expression, then
[ ul§ic = £'9( A w)
= E([F((Au)0ip)]r)
= E([F((Au)lp)lr)

where 6 is a substitution as required by the definition of £1C. []

We need to show that the interpretation J'¢ is proper. In the proof, we will need the
following lemma, which is very similar to the substitution lemma (Lemma 3.1), but we must
prove it here for our particular interpretation J'¢ because we have not shown that JC is
proper yet.

Lemma 4.44. Let p be a grounding substitution, t be a A-term, and & be a valuation.
Moreover, we define a valuation &' by & (o) = [[oz,o]]gin for all type variables o and & (x) =
ty

[[acp]]gIG for all term variables x. We then have

[to)e = [t]5ie

Proof. The proof is adapted from the proof of Lemma 41 in Bentkamp et al. [7]. We proceed
by induction on the structure of 7 and ¢. The proof is identical to that of Lemma 3.1, except
for the last case, which uses properness of the interpretation, a property we cannot assume
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here. However, here, we have the assumption that p is a grounding substitution. Therefore,
if t is a A-expression, we argue as follows:

[(A U)P]]gm =[x up]]§IG

= L6, Nup) by the definition of the term denotation
= E([F((Au)pdls)]R) for some 6 by the definition of £'¢

= E([F((Nu)plp)lr) because (A u)p is ground

= LIS au) by the definition of £'¢ and Lemma 4.43
=[A u]]gllc by the definition of the term denotation

The step labeled with x is justified as follows: We have £1¢(¢/, A u) = E([F((Au)d' Lg)] )
by the definition of LG, if @ is a substitution such that D,g = {y(a) for all a and
E([F(x0'Lp)] ) = &te(w) for all x. By the definition of ¢’ and by Lemma 4.43, p is such a
substitution. Hence, £1¢(&', Au) = E([F(Au)ply)lg)- []

Lemma 4.45. The interpretation 3'C is proper.
Proof. We need to show that [A t]]gfg’&e)(a) = [[t{0— m}ﬂgfg ’gte[xHa]), where z is a fresh
variable.

A t]]gfg’&e)(a) = LG ((&y, &e), A 1) (a) by the definition of term denotation

= E([F((A)01p)]R)(a) by the definition of LG for some 6
such that E([F(20)] ) = &e(2) for
all z and Dyg = &y () for all

= E([FU((A)0s)Lp)R) by the definition of &
where E([F (s)]p) = a

= E([F (t{0 = x}(O[z + s])I3)]z) by B-reduction
where z is fresh

= [t{0 = 2} (0[z — 5])]c by Lemma 4.43
= [t{0— ZU}]]:(]%,&e[aHa]) by Lemma 4.44

[

Lemma 4.46. J'C is term-generated; i.e., for all D € UG and all a € D, there exists a
ground type T such that [T];c =D and a ground term t such that [t] e = a.
ty

Proof. In the construction above, it is clear that there is a one-to-one correspondence between
ground types and domains, which yields a suitable ground type 7.

Since R is term-generated, there must be a ground term s € 7y such that [s], = £7(a).
Let t = F~1(s). Then, by Lemma 4.43, [t].c = &([s]z) = a- ]

Lemma 4.47. Given C € Gg, we have 3'C |= C if and only if R = F(C).
Proof. By Lemma 4.43, we have
[t]ye = E([F (tds)]R)
for any t € Tgound(21). Since € is a bijection, it follows that a ground literal s =~ t in a

clause C' € (i is true in 'S if and only if # (s & t) is true in R. So any closure C' € (iq is
true in J'¢ if and only if #(C) is true in R. ]
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Theorem 4.48. Let N C (Gg be saturated up to redundancy w.r.t. IGRedy, and | & N.

Then J'G |= N.
Proof. By Lemma 4.47, it suffices to show that R is a model of N. We apply Theorem 4.40.
Lemma 4.16 shows the condition of saturation up to redundancy. L]

4.4.3. Ground Higher-Order Level. In this subsubsection, let > be an admissible term order
for GInf (Definition 4.9), and let gsel be a selection function on (g.

It is inconvenient to construct a model of Vg for the G level because J converts parameters
into subscripts. For example, in the model constructed in the previous subsubsection, it
can happen that a =~ b holds, but f; = f, does not hold, where a and b are constants and
fa and fp, are constants originating from a constant f with a parameter. For this reason,
our completeness result for the G level only constructs a model of 7(IN) C (g instead of
N C Cg. We will overcome this flaw when we lift the result to the H level where the initial
clause set can be assumed not to contain any constants with parameters.

Theorem 4.49. Let N C (g be saturated up to redundancy w.r.t. GRedr, and 1. & N. Then
JG = 9(N).
Proof. This follows from Theorem 4.48 and Lemma 4.23. []

4.4.4. Full Higher-Order Level. In this subsubsection, let > be an admissible term order
(Definition 2.12), which by Lemma 4.24 is also an admissible term order for GInf, and let
hsel be a selection function on (i (Definition 2.14).

Definition 4.50. A derivation is a finite or infinite sequence of sets (IV;);>¢ such that
N; \ Nit+1 € HRedc(N;41) for all i. A derivation is called fair if all HInf-inferences from
clauses in J; [);»; IV; are contained in J; HRed1(N;).

Lemma 4.51. The redundancy criteria HRedc and HRedy fulfill the following properties,
as stated by Waldmann et al. [20]:

(R2) if N C N', then HRedc(N) C HRedc(N') and HRedi(N) C HRedi(N');
(R3) if N' C HRedc(N), then HRedc(N) C HRedc(N\N') and HRed;(N) C HRedi(N\N');
(R4) if v € HInf and concl(t) € N, then « € HRedI(N).

Proof. (R2): This is obvious by definition of clause and inference redundancy.

(R3) for clauses:

Define » as a relation on sets of pairs of a clause C' € (31 and a grounding substitution
0, written C' - 6, as

C-0w D-p ift CO> Dpor (CO=Dpand C D)

Clearly, for all C € Gy and all N C (G, we have C € HRedc(N) if and only if for all
grounding substitutions #, we have

{F(E() | E € N, ¢ grounding, and E - €4 C -0} =, F(CH)

Now we are ready to prove (R3). Let C € HRedc(N). We must show that C €
HRedc(N \ N'). Let 6 be a grounding substitution. We must show that

{F(EC)| E € N\ N', ¢ grounding, and E - ( €4 C -0} =\ F(C0)
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Since C' € HRedc(N), we know that
{F(E()| E € N, ¢ grounding, and E - €4 C -0} =, F(C0)
So it suffices to show that
{F(EC)| E € N\ N', ¢ grounding, and F - €4 C -0}
Fox {F(EQ) | E € N, ¢ grounding, and E - € C -6}
Let Fy € N and (p grounding with Ey - (o € C - 0. We will show by well-founded induction
on Ey-(y w.r.t. « that
{F(EQ) | E€ N\ N', ¢ grounding, and E - ¢ 4 C -0} Fox ¥ (EoCo) (%)
Our induction hypothesis states:
{F(EC)| E€ N\ N', ¢ grounding, and E - €4 C -0}
Eox {F(EC) | E € N, ¢ grounding, and F - €4 Ey - (p}

If Ey € N\ N, the claim (x) is obvious. So we may assume that Ey € N'. The assumption
of (R3) states N’ C HRedc(N), and thus we have

{F(ECQ) | E €N, ( grounding, and E - ( 4 Eo - (o} Fox T (EoCo)

By the induction hypothesis, this implies (x).

(R3) for inferences:

Inspecting this definition of HRed; (Definition 2.25), we observe that to show that
HRed1(N) C HRedi(N \ N'), it suffices to prove that

{E€ F(GIN\N)) | E =5 F(Cmbm)}
):o)\
{EcF(GIN) [ E <5 F(Cnbn)}

possibly without the condition £ < mUm ) tor DIFF 1nferences), where C),, and 0,, are
ibly with h dition £ <4 F(Cp0p,) for DIFF inf here C, do
given in the definition of HRed;. We can equivalently write this as
{F(EC)| E € N\ N', ¢ grounding, and E¢ < Cy,0,,}
Fon {F(EQ) | E € N, ( grounding, and E¢ < Cy,0,,}

Let Ey € N and (p grounding with Fo(y < Cinb,. We must show that

{T(EC) ’ EeN \ va C grounding? and EC = Cmem} }:0)\ }—(EOCO) (T)
If Ey € N\ N, the claim (f) is obvious. So we may assume that Ey € N’. The

assumption of (R3) states N’ C HRedc(N), and thus N’ C HRedc(N \ N') by (R3) for
clauses. So we have
{F(EQ) | E€ N\ N', ¢ grounding, and E - < Eo - (o} Fox F (Eolo)

This implies (1) because for any E - with F - ( € Ey - (9, we have E¢ < Ey(y < Cpnbp,.

(R4) Let « € HInf with concl(t) € N. We must show that « € HRedi(N). Let C1, ...,
Cy, be ’s premises and C),41 its conclusion. Let 61,...,60,,4+1 be a tuple of substitutions
for which ¢ is rooted in FInf (Definition 2.24). According to the definition of HRedy
(Definition 2.25), we must show that
— F(G(N)) Eox F(Crg10m+1) if ¢ is a DIFF inference; and
—{FEe€ F(GIN)) | E<¢ F(Cmbm)} For F(Crmi10m+1) if ¢ is some other inference.
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Since concl(t) € N and concl(t) = Cyyq1, we have Cyp1 € N. Thus, F(Cry10m+1) €
F(G(N)). This completes the proof for DIFF inferences because F(Cpt+10m+1) Fon
F(Cpmt10m+1). For the other inferences, it remains to prove that F(Cpt+10m+1) <7
F(Crmbm).

By Definition 2.24, F(Cp,6,,) is the main premise and F (Chy4160m+1) is the conclusion
of an FInf inference. We will show for each FInf rule that the conclusion is smaller than
the main premise.

By Lemma 4.5, > jr=>+. By Lemmas 4.18 and 4.12, it follows that > ¢ is admissible
for FiInf.

For FSup, we must argue that C[t] =4 D’V C[t']. Since the literal ¢ ~ ¢’ is strictly
eligible in D and if ¢ is Boolean, then ¢ = T, the literal ¢ ~ ¢’ is strictly maximal in D.
Since the position of ¢ is eligible in C[t], it must either occur in a negative literal, in a literal
of the form ¢ ~ L, or in a maximal literal in C[t]. If the position of ¢ is in a negative literal
or in a literal of the form ¢ ~ L, then that literal is larger than ¢ ~ ¢’ because if ¢’ is Boolean,
then ¢ = T. Thus, the literal in which ¢ occurs in C[t] is larger than D’ because t =~ t' is
strictly maximal in D. If the position of ¢ is in a maximal literal of C[t], then that literal is
larger than or equal to t &~ t' because D <g¢ C|[t], and thus it is larger than D’ as well. In
C1t'], this literal is replaced by a smaller literal because ¢ > t'. So C[t] =4 D' Vv C[t'].

For FEQRES, clearly, C' Vu s u =4 C.

For FEQFACT, we have u ~ v = u ~ v’ and thus v =4 v'. Since u ¢ v, we have
ur v =g v v and thus the premise is larger than the conclusion.

For FCLAUSIFY, it is easy to see that for any of the listed values of s, ¢, and D, we have
sxt>¢ D, using (O3)p and (O4)p. Thus the premise is larger than the conclusion.

For FBooLHOIST and FLOOBHOIST, we have u > L and u > T by (O4)r because
u # L and u # T. Moreover, the occurrence of w in Clu| is required not to be in a literal of
the form v ~ L or u ~ T, and thus, by (O4)p, it must be in a literal larger than these. It
follows that the premise is larger than the conclusion.

For FFALSEELIM, clearly, 'V L~ T =4 C'.

For FARGCONG, the premise is larger than the conclusion by (O5)p.

For FEXT, we use the condition that u >¢ w and (O3)r to show that C[¥ (w)] is
smaller than the premise. We use u >+ w and (O5)r to show that ¥ (u diff (7, v)(u,w)) %
F (w diff (1, v)(u, w)) is smaller than the premise.

Theorem 4.52. Given a fair derivation (N;)i>0, where

1. Ny does not have a term-generated model,
2. Ny does not contain parameters,

we have 1 € N; for some index 1.

Proof. By Lemma 9 of Waldmann et al. [20], using Lemma 4.51, the limit Noo = U, (;; V;
is saturated up to redundancy w.r.t. HInf and HRed;. By Lemma 4.29, G(Ny,) is saturated
up to redundancy w.r.t. GInf and GReds.

For a proof by contradiction, assume that for all i, L & N;. Then N, does not contain
L either, and thus G(Nu) does not contain L. By Lemma 4.49, ' = 7(G(Ny)).

By Lemma 8 of Waldmann et al. [20], using Lemma 4.51, Ny C Noo U HRedc(No).
Thus, F(G(Nuo)) Eox F(G(No)). Since 7% |= 7(G(Nu)), by Lemma 4.47 and Lemma 4.5,
it follows that J'G |= 7(G(Ny)).

Now J'G can be shown to be a model of Ny as follows. Let C € Ny. Let & be a
valuation. Since J'¢ is term-generated by Lemma 4.46, there exists a substitution # such
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that [[oz&]]JIG = &iy(a) for all type variables o in C' and [20] ¢ = &we(w) for all term variables
x in C. Sifice C' does not contain parameters by condition 2 of this theorem, C8 € 7(G(No)).
Thus we have J'¢ = C6. By Lemma 3.2, it follows that C is true w.r.t. £ and J'S. Since ¢
and C' € Ny were arbitrary, we have J'¢ |= Ny. This contradicts condition 1 of the present
theorem.

[

Lemma 4.53. Let N be a clause set that does not contain diff. If N has a term-generated
model, then N has a diff-aware model.

Proof. Let J = (Jy,d,£) be a model of N. We assume that the signature of J does not
contain diff. We extend it into a diff-aware model 3’ = (J;,,d’, £') as follows.

We define J'(diff, D1, Do, a,b) to be an element e € Dy such that a(e) # b(e) if such an
element exists and an arbitrary element of D otherwise. This ensures that J’ is diff-aware
(Definition 1.1).

To define £’ let £ be a valuation and t be a A-abstraction. We replace each occurrence
of diff(r, vg(u w) in ¢ Wlth a ground term s that does not contain diff such that [s], =
J' (diff, [[T]]jty, [[v]]j [[u]]j, ﬂw]] ). Such a term s exists because J is term-generated. We start
replacing the innermost occurrences of diff and proceed outward to ensure that the parameters
of a replaced diff do not contain diff themselves. Let ¢’ be the result of this replacement.
Then we define £'(£,t) = L£L(&,t'). This ensures that J’ is a proper interpretation.

Since N does not contain diff and J is a model of N, it follows that J’ is a model of N
as well. []

Corollary 4.54. Given a fair derivation (N;)i>0, where
1. No R L, and

2. Ny does not contain parameters,

we have L € N; for some index 1.

Proof. By Theorem 4.52 and Lemma 4.53. L]
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