
SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

This document describes a simplified variant of the optimistic λ-superposition calculus.
The main difference is that the present variant does not annotate clauses with constraints.
This simplifies especially the completness proof because we can use ground clauses instead
of ground closures in the first-order part of the proof. It also strengthens and simplifies the
redundancy criterion. However, we are forced to introduce superposition inferences into
variables when those variables also have occurrences inside parameters.

1. Logic

Our formalism is higher-order logic with functional and Boolean extensionality, rank-1
polymorphism, but without choice and the axiom of infinity. The logic closely resembles
Gordon and Melham’s HOL [14], the TPTP TH1 standard [15], and the logic underlying
λ-superposition by Bentkamp et al. [5].

Departing from Bentkamp et al., in the present work, quantifiers are not supported and
must always be encoded as (λx. t) ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈ (λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) and (λx. t) ̸≈ (λx.⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥). This is necessary because
quantifiers would prevent us from constructing a suitable term order for the extensionality
behavior that we want to achieve. Moreover, we do not include the axiom of choice.

To make the positive literal of the extensionality axiom maximal, we introduce a special
type of argument to constants into our syntax, the parameters. A constant that takes
parameters cannot occur without them; partial application is not allowed for parameters.
Moreover, parameters cannot contain variables bound by λ-abstractions.

As our semantics, we use Henkin semantics. True statements in these semantics
correspond exactly to provable statements in the HOL systems. Since Henkin semantics
is not subject to Gödel’s first incompleteness theorem, it allows us to prove refutational
completeness.

1.1. Syntax. We use the notation ān or ā to denote a tuple (a1, . . . , an). If f is a unary
function, we write f(ān) for the elementwise application (f(a1), . . . , f(an)).

1.1.1. Types. To define our logic’s types, we fix an infinite set Vty of type variables. A set
Σty of type constructors, each associated with an arity, is a type signature if it contains
at least one nullary type constructor o of Booleans and a binary type constructor → of
functions. A type is either a type variable α ∈ Vty or an applied type constructor κ(τ̄n) for
some n-ary κ ∈ Σty and types τ̄n. To indicate that an expression e has type τ , we write e : τ .

Preprint submitted to
Logical Methods in Computer Science

© SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION
CC⃝ Creative Commons

http://creativecommons.org/about/licenses

2 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

1.1.2. Lambda-Preterms and Lambda-Terms. To define our logic’s terms, for a given type
signature Σty, we fix a set V of variables with associated types. We write x⟨τ⟩ for a variable
named x with associated type τ . We require that V contains infinitely many variables of
any type.

A term signature Σ is a set of constants. Each constant is associated with a type
declaration of the form Πᾱm. τ̄n ⇒ υ, where τ̄n and υ are types and ᾱm is a tuple of
distinct variables that contains all type variables from τ̄n and υ. The types τ̄n are the
types of the parameters of the constant, and υ may be a function type if the constant takes
nonparameter arguments. We require that Σ contains the logical symbols ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ : o; ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ : o → o;
∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧,∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨,→→→→→→→→→→→→→→→→→→→→→→→→→ : o → o → o; and ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈, ̸≈ : Πα. α → α → o. A type signature and a term signature
form a signature.

Our syntax makes use of a locally nameless notation [10] using De Bruijn indices [11].
We distinguish between λ-preterms, λ-terms, preterms, and terms. Roughly, λ-preterms are
raw syntactic expressions, λ-terms are the subset of locally closed λ-preterms, preterms are
βη-equivalence classes of λ-preterms, and terms are βη-equivalence classes of λ-terms. More
precisely, we define these notions as follows.

The set of λ-preterms is built from the following expressions:

– a variable x⟨τ⟩ : τ for x⟨τ⟩ ∈ V;
– a symbol f⟨ῡm⟩(ūn) : τ for a constant f ∈ Σ with type declaration Πᾱm. τ̄n ⇒ τ , types ῡm,

and λ-preterms ū : τ̄n such that all De Bruijn indices in ū are bound;
– a De Bruijn index n⟨τ⟩ : τ for a natural number n ≥ 0 and a type τ , where τ represents

the type of the bound variable;
– a λ-expression λ⟨τ⟩ t : τ → υ for a type τ and a λ-preterm t : υ such that all De Bruijn

indices bound by the new λ⟨τ⟩ have type τ ;
– an application s t : υ for λ-preterms s : τ → υ and t : τ .

The type arguments ⟨τ̄⟩ carry enough information to enable typing of any λ-preterm without
any context. We often leave them implicit, when they are irrelevant or can be inferred. In
f⟨ῡm⟩(ūn) : τ , we call ūn the parameters. We omit () when a symbol has no parameters.
Notice that it is possible for a term to contain multiple occurrences of the same free De
Bruijn index with different types. In contrast, the types of bound De Bruijn indices always
match.

The set of λ-terms is the subset λ-preterms without free De Bruijn indices, i.e, the subset
of locally closed λ-preterms. We write T λ(Σ,V) for the set of all λ-terms and T λpre(Σ,V)
for the set of all λ-preterms, sometimes omitting the set V when it is clear from the context.

A λ-preterm is called functional if its type is of the form τ → υ for some types τ and υ.
It is called nonfunctional otherwise.

Given a λ-preterm t and λ-terms s0, . . . , sn, we write t{0 7→ s0, . . . , n 7→ sn} for the
λ-preterm resulting from substituting si for each De Bruijn index i+ j enclosed into exactly
j λ-abstractions in t. For example, (f 0 1 (λ g 1 2)){0 7→ a, 1 7→ b} = f a b (λ g a b). Given
a λ-preterm t and a tuple s̄n of λ-terms, we abbreviate t{0 7→ s1, . . . , (n − 1) 7→ sn} as
t{(0, . . . , n− 1) 7→ s̄n}.

We write t↓β for the β-normal form of a λ-preterm t.
A λ-preterm s is a subterm of a λ-preterm t, written t = t[s], if t = s, if t = f⟨τ̄m⟩(ū) v

with ui = ui[s] or v = v[s], if t = λ u[s], if t = (u[s]) v, or if t = u (v[s]). A subterm is proper
if it is distinct from the λ-preterm itself.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 3

A λ-preterm is ground if it contains no type variables and no term variables, i.e., if
it is closed and monomorphic. We write T λpre

ground(Σ) for the set of ground λ-preterms and
T λ
ground(Σ) for the set of ground λ-terms.

1.1.3. Preterms and Terms. The set of (pre)terms consists of the βη-equivalence classes of
λ-(pre)terms. For a given set of variables V and signature Σ, we write T (Σ,V) for the set of
all terms and T pre(Σ,V) for the set of all preterms, sometimes omitting the set V when it is
clear from the context. We write Tground(Σ) for the set of ground terms.

When referring to properties of a preterm that depend on the representative of its
equivalence class modulo β (e.g., when checking whether a preterm is ground or whether
a preterm contains a given variable x), we use a β-normal representative as the default
representative of the βη-equivalence class. When referring to properties of a preterm that
depend on the choice of representative modulo η, we state the intended representative
explicitly.

Clearly, any preterm in β-normal form has one of the following four mutually exclusive
forms:

– x⟨τ⟩ t̄ for a variable x⟨τ⟩ and terms t̄;
– f⟨τ̄⟩(ū) t̄ for a symbol f , types τ̄ , and terms ū, t̄;
– n⟨τ⟩ t̄ for a De Bruijn index n⟨τ⟩ and terms t̄;
– λ⟨τ⟩ t for a term t.

1.1.4. Substitutions. A substitution is a mapping ρ from type variables α ∈ Vty to types αρ
and from term variables x⟨τ⟩ ∈ V to (λ-)terms xρ : τρ. A substitution ρ applied to a (λ-)term
t yields a (λ-)term tρ in which each variable x is replaced by xρ. Similarly, subsitutions can
be applied to types. The notation {ᾱ 7→ τ̄ , x̄ 7→ t̄} denotes a substitution that maps each αi

to τi and each xi to ti, and all other type and term variables to themselves. The composition
ρσ of two substitutions applies first ρ and then σ: tρσ = (tρ)σ. A grounding substitution
maps all variables to ground types and ground (λ-)terms. The notation σ[x̄ 7→ t̄] denotes
the substitution that maps each xi to ti and otherwise coincides with σ.

1.1.5. Clauses. Finally, we define the higher-order clauses on which our calculus operates.
A literal is an unordered pair of two terms s and t associated with a positive or negative
sign. We write positive literals as s ≈ t and negative literals as s ̸≈ t. The notation s ≈̇ t
stands for either s ≈ t or s ̸≈ t. Nonequational literals are not supported and must be
encoded as s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. A clause L1 ∨ · · · ∨ Ln is a finite multiset of literals. The
empty clause is written as ⊥. Finally, we define a grounding function G on clauses as
G(C) = {Cθ | θ is a grounding substitution}

1.2. Semantics. The semantics is essentially the same as in Bentkamp et al. [5], adapted
to the modified syntax.

A type interpretation Ity = (U, Jty) is defined as follows. The universe U is a collection
of nonempty sets, called domains. We require that {0, 1} ∈ U. The function Jty associates
a function Jty(κ) : U

n → U with each n-ary type constructor κ, such that Jty(o) = {0, 1}
and for all domains D1,D2 ∈ U, the set Jty(→)(D1,D2) is a subset of the function space
from D1 to D2. The semantics is standard if Jty(→)(D1,D2) is the entire function space for
all D1,D2. A type valuation ξty is a function that maps every type variable to a domain.

4 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

The denotation of a type for a type interpretation Ity and a type valuation ξty is recursively
defined by JαKξtyIty

= ξty(α) and Jκ(τ̄)KξtyIty
= Jty(κ)(Jτ̄KξtyIty

).
Given a type interpretation Ity and a type valuation ξty, a term valuation ξte assigns an

element ξte(x) ∈ JτKξtyIty
to each variable x : τ . A valuation ξ = (ξty, ξte) is a pair of a type

valuation ξty and a term valuation ξte.
An interpretation function J for a type interpretation Ity associates with each symbol

f : Πᾱm. τ̄ ⇒ υ, a domain tuple D̄m ∈ Um, and values ā ∈ Jτ̄KξtyIty
a value J(f, D̄m, ā) ∈ JυKξtyIty

,
where ξty is a type valuation that maps each αi to Di. We require that

(I1) J(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = 1
(I2) J(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 0
(I3) J(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = min {a, b}
(I4) J(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = max {a, b}

(I5) J(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = 1− a
(I6) J(→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = max {1− a, b}
(I7) J(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈,D)(c, d) = 1 if c = d and 0 otherwise
(I8) J(̸≈,D)(c, d) = 0 if c = d and 1 otherwise

for all a, b ∈ {0, 1}, D ∈ U, and c, d ∈ D.
The comprehension principle states that every function designated by a λ-expression is

contained in the corresponding domain. Loosely following Fitting [13, Sect. 2.4], we initially
allow λ-expressions to designate arbitrary elements of the domain, to be able to define the
denotation of a λ-term. We impose restrictions afterward using the notion of a proper
interpretation, enforcing comprehension.

A λ-designation function L for a type interpretation Ity is a function that maps a
valuation ξ and a λ-expression of type τ to elements of JτKξtyIty

. We require that the value
L(ξ, t) depends only on values of ξ at type and term variables that actually occur in t.
A type interpretation, an interpretation function, and a λ-designation function form an
interpretation I = (Ity, J,L).

For an interpretation I and a valuation ξ, the denotation of a λ-term is defined as
JxKξI = ξte(x), Jf⟨τ̄⟩(s̄)KξI = J(f, Jτ̄KξtyIty

, Js̄KξI), Js tKξI = JsKξI(JtK
ξ
I), and Jλ⟨τ⟩ tKξI = L(ξ, λ⟨τ⟩ t).

For ground λ-terms t, the denotation does not depend on the choice of the valuation ξ,
which is why we sometimes write JtKI for JtKξI .

An interpretation I is proper if Jλ⟨τ⟩ tK(ξty,ξte)I (a) = Jt{0 7→ x}K(ξty,ξte[x 7→a])
I for all λ-

expressions λ⟨τ⟩ t and all valuations ξ, where x is a fresh variable. Given an interpretation
I and a valuation ξ, a positive literal s ≈ t (resp. negative literal s ̸≈ t) is true if JsKξI and
JtKξI are equal (resp. different). A clause is true if at least one of its literals is true. A set of
clauses is true if all its elements are true. A proper interpretation I is a model of a set N of
clauses, written I |= N , if N is true in I for all valuations ξ. Given two sets M,N of clauses,
we say that M entails N , written M |= N , if every model of M is also a model of N .

1.3. The Extensionality Skolem Constant. Any given signature can be extended with
a distinguished constant diff : Πα, β. (α → β, α → β) ⇒ α, which we require for our calculus.
Interpretations as defined above can interpret the constant diff arbitrarily. The intended
interpretation of diff is as follows:

Definition 1.1. We call a proper interpretation I diff-aware if I is a model of the exten-
sionality axiom—i.e.,

I |= z (diff⟨α, β⟩(z, y)) ̸≈ y (diff⟨α, β⟩(z, y)) ∨ z ≈ y

Given two sets M,N of clauses, we write M |≈ N if every diff-aware interpretation that is a
model of M is also a model of N .

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 5

Our calculus is sound and refutationally complete w.r.t. |≈ but unsound w.r.t. |=.

2. Calculus

2.1. Orange, Yellow, and Green Subterms. As in the original λ-superposition calculus,
a central notion of our calculus is the notion of green subterms. These are the subterms that
we consider for superposition inferences. For example, in the clause f a ̸≈ b, a superposition
inference at a or f a is possible, but not at f. Our definition here deviates from Bentkamp et
al. [5] in that functional terms never have nontrivial green subterms.

In addition to green subterms, we define yellow subterms, which extend green subterms
with subterms inside λ-expressions, and orange subterms, which extend yellow subterms
with subterms containing free De Bruijn indices. Orange subterms are the subterms that
our redundancy criterion allows simplification rules to rewrite at. For example, the clauses
λ c ̸≈ b and f x x ≈ c can make λ f 0 0 ̸≈ b redundant (assuming a suitable clause order), but
g a ̸≈ b and g ≈ f cannot make f a ̸≈ b redundant. It is convenient to define orange subterms
first, then derive yellow and green subterms based on orange subterms.

Orange subterms depend on the choice of βη-normal form:

Definition 2.1 (βη-Normalizer). Given a preterm t, let t ↓βηlong be its β-normal η-long
form and let t ↓βηshort be its β-normal η-short form. A βη-normalizer is a function ↓βη ∈
{↓βηlong, ↓βηshort}.

Definition 2.2 (Orange Subterms). We start by defining orange positions and orange
subterms on λ-preterms.

Given a list of natural numbers p and s, t ∈ T λpre(Σ), we say that p is an orange position
of t, and s is an orange subterm of t at p, written t|p = s, if this can be derived inductively
from the following rules:

1. u|ε = u for all u ∈ T λpre(Σ), where ε is the empty list.
2. If ui|p = v, then (f⟨τ̄⟩(s̄) ūn)|i.p = v for all f ∈ Σ, types τ̄ , λ-preterms s̄, ūn, v ∈ T λpre(Σ),

and 1 ≤ i ≤ n.
3. If ui|p = v, then (m⟨τ⟩ ūn)|i.p = v for all De Bruijn indices m, types τ , λ-preterms

ūn, v ∈ T λpre(Σ), and 1 ≤ i ≤ n.
4. If u|p = v, then (λ⟨τ⟩ u)|1.p = v for all types τ and λ-preterms u, v ∈ T λpre(Σ).

We extend these notions to preterms as follows. Given a βη-normalizer ↓βη, a list of natural
numbers p and s, t ∈ T pre(Σ), we say that p is an orange position of t, and s is an orange
subterm of t at p w.r.t. ↓βη, written t|p = s, if (t↓βη)|p = s↓βη.

The context u[] surrounding an orange subterm s of u[s] is called an orange context.
The notation u s p or u s indicates that s is an orange subterm in u[s] at position p, and
u indicates that u[] is an orange context.

Example 2.3. Whether a preterm is an orange subterm of another preterm depends on the
chosen βη-normal form ↓βη. For example, the preterms f 0 and 0 are orange subterms of λ f 0
in η-long form, but they are not orange subterms of the η-short form f of the same term.

Remark 2.4. The possible reasons for a subterm not to be orange are the following:

– It is applied to arguments.
– It occurs inside a parameter.
– It occurs inside an argument of an applied variable.

6 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Definition 2.5 (Yellow Subterms). Let ↓βη be a βη-normalizer. A yellow subterm w.r.t.
↓βη is an orange subterm that does not contain free De Bruijn indices. A yellow position
w.r.t. ↓βη is an orange position that identifies a yellow subterm. The context surrounding a
yellow subterm is called a yellow context.

Lemma 2.6. Whether a preterm is a yellow subterm of another preterm is independent of
↓βη. (On the other hand, its yellow position may differ.)

Proof. It suffices to show that a single η-expansion or η-contraction from a β-reduced λ-
preterm s into another β-reduced λ-preterm cannot remove yellow subterms. This suffices
because only such η-conversations are needed to transform a β-normal η-long form into a
β-normal η-short form and vice versa.

Assume s has a yellow subterm at yellow position p. Consider the possible forms that a
β-reduced λ-preterm s can have:

– x⟨τ⟩ t̄ for a variable x⟨τ⟩ and λ-preterms t̄;
– f⟨τ̄⟩(ū) t̄ for a symbol f, types τ̄ , and λ-preterms ū, t̄;
– n⟨τ⟩ t̄ for a De Bruijn index n⟨τ⟩ and λ-preterms t̄;
– λ⟨τ⟩ t for a λ-preterm t.

Consider where an η-conversion could happen: If an η-expansion takes place at the left-hand
side of an application, the result is not β-reduced. If an η-reduction takes place at the
left-hand side of an application, the original λ-preterm is not β-reduced. If the yellow
subterm at p does not overlap with the place of η-conversion, the η-conversion has no
effect on the yellow subterm. This excludes the case where the η-conversion takes place in
an argument of an applied variable or in a parameter. So the only relevant subterms for
η-conversions are (a) the entire λ-preterm s, (b) a subterm of t̄ in f⟨τ̄⟩(ū) t̄, (c) a subterm of
t̄ in n⟨τ⟩ t̄, or (d) a subterm of t in λ⟨τ⟩ t.

Next, we consider the possible positions p. If the η-conversion takes place inside of
the yellow subterm, it certainly remains orange because orange subterms only depend on
the outer structure of the λ-preterm. It also remains yellow because η-conversion does not
introduce free De Bruijn indices. This covers in particular the case where p is the empty list.
Otherwise, the yellow subterm at p is also (i) a yellow subterm of t̄ in f⟨τ̄⟩(ū) t̄, (ii) a yellow
subterm of t̄ in n⟨τ⟩ t̄, or (iii) a yellow subterm of t in λ⟨τ⟩ t. In cases (b), (c), and (d), we
can apply the induction hypothesis to t̄ or t and conclude that the yellow subterm of t̄ or t
remains yellow and thus the yellow subterm of s at p remains yellow as well. In case (a), we
distinguish between the cases (i) to (iii) described above:

(i) Then the only option is an η-expansion of f⟨τ̄⟩(ū) t̄ to λ f⟨τ̄⟩(ū) t̄ 0. Clearly, the yellow
subterm in t̄ remains yellow, although its yellow position changes.

(ii) Analogous to (i).
(iii) Here, one option is an η-expansion of λ t to λ λ t 0, which can be treated analogously

to (i).
The other option is an η-reduction of λ t to t′, where t = t′ 0. We must show that a

yellow subterm of t is also a yellow subterm of t′. Since a yellow subterm of t cannot
contain the free De Bruijn index 0, the λ-preterm t′ must be of the form v w̄, where
the preterm v is a symbol or a De Bruijn index and the yellow subterm of t = v w̄ 0
must be a yellow subterm of one of the arguments w̄. Then it is also a yellow subterm
of v w̄ = t′.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 7

Definition 2.7 (Green Subterms). A green position is an orange position p such that each
orange subterm at a proper prefix of p is nonfunctional. Green subterms are orange subterms
at green positions. The context surrounding a green subterm s of u[s] is called a green
context. The notation u s p or u s indicates that s is a green subterm in u[s] at position
p, and u indicates that u[] is a green context.

Clearly, green subterms can equivalently be described as follows: Every term is a green
subterm of itself. If u is nonfunctional, then every green subterm of one of its arguments
si is a green subterm of u = f(t̄) s̄ and of u = n t̄. Moreover, since η-conversions can occur
only at functional subterms, both green subterms and green positions do not depend on the
choice of a βη-normalizer ↓βη.

Example 2.8. Let ι be a type constructor. Let α be a type variable. Let x : ι → ι be a
variable. Let a : ι, f : Πα. ι ⇒ (ι → ι) → α, and g : ι → ι → ι be constants. Consider the
term f⟨α⟩(a) (λ g (x a) 0). Its green subterms are the entire term (at position ε) and λ g (x a) 0
(at position 1). Its yellow subterms are the green subterms and x a (at position 1.1.1 w.r.t.
↓βηlong or at position 1.1 w.r.t. ↓βηshort). Its orange subterms w.r.t. ↓βηlong are the yellow
subterms and g (x a) 0 (at position 1.1) and 0 (at position 1.1.2). Using ↓βηshort, the orange
subterms of this term are exactly the yellow subterms.

For positions in clauses, natural numbers are not appropriate because clauses and literals
are unordered. A solution is the following definition:

Definition 2.9 (Orange, Yellow, and Green Positions and Subterms in Clauses). Let C be a
clause, let L = s ≈̇ t be a literal in C, and let p be an orange position of s. Then we call the
expression L.s.p an orange position in C, and the orange subterm of C at position L.s.p is the
orange subterm of s at position p. Yellow positions/subterms and green positions/subterms
of clauses are defined analogously.

Example 2.10. The clause C = K ∨ L with K = f a ̸≈ b and L = c ≈ f a contains
the orange subterm a twice, once at orange position L.(f a).1 and once at orange position
K.(f a).1.

2.2. Complete Sets of Unifiers.

Definition 2.11. Given a set of constraints S and a set X of variables, where X contains
at least the variables occurring in S, a complete set of unifiers is a set P of unifiers of S
such that for each unifier θ of S, there exists a substitution σ ∈ P and a substitution ρ such
that xσρ = xθ for all x ∈ X.

Given a set of constraints S and a set X of variables, we write CSUX(S) or CSU(S) for
an arbitrary complete set of unifiers. Again, we require that all elements of CSU(S) unify at
least the types of the terms pairs in S and that all elements of CSU(S) are idempotent.

2.3. Term Orders and Selection Functions. Our calculus is parameterized by a relation
≻ on terms, literals, and clauses. We call ≻ the term order, but it need not formally be a
partial order. Moreover, our calculus is parameterized by a literal selection function.

The original λ-superposition calculus also used a nonstrict term order ≿ to compare
terms that may become equal when instatiated, such as x b ≿ x a, where b ≻ a. However,

8 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

contrary to the claims made for the original λ-superposition calculus, employing the nonstrict
term order can lead to incompleteness [6], which is why we do not use it in our calculus.

Moreover, the original λ-superposition calculus used a Boolean selection function to
restrict inferences on clauses containing Boolean subterms. For simplicity, we omit this
feature in our calculus because an evaluation did not reveal any practical benefit [18].

Definition 2.12 (Admissible Term Order). A relation ≻ on terms and on clauses is an
admissible term order if it fulfills the following criteria, where ⪰ denotes the reflexive closure
of ≻:

(O1) the relation ≻ on ground terms is a well-founded total order;
(O2) ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground

terms s, s′, and t;
(O3) ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4) u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5) u ≻ u diff⟨τ, υ⟩(s, t) for all ground types τ, υ and ground terms s, t, u : τ → υ;
(O6) the relation ≻ on ground clauses is the standard extension of ≻ on ground terms via

multisets [1, Sect. 2.4];
(O7) stability under grounding substitutions for terms: t ≻ s implies tθ ≻ sθ for all

grounding substitutions θ;
(O8) stability under grounding substitutions for clauses: D ≻ C implies Dθ ≻ Cθ for all

grounding substitutions θ;
(O9) transitivity on literals: the relation ≻ on literals is transitive;

Definition 2.13 (Maximality). Given a term order ≻, a literal K of a clause C is maximal
if for all L ∈ C such that L ⪰ K, we have L ⪯ K. It is strictly maximal if it is maximal
and occurs only once in C.

In addition to the term order, our calculus is parameterized by a selection function:

Definition 2.14 (Literal Selection Function). A literal selection function is a mapping from
each clause to a subset of its literals. The literals in this subset are called selected. Only
negative literals and literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ may be selected.

Based on the term order and the selection function, we define eligibility as follows:

Definition 2.15 (Eligibility). A literal L is (strictly) eligible w.r.t. a substitution σ in C if
it is selected in C or there are no selected literals in C and Lσ is (strictly) maximal in Cσ.

A green position L.s.p of a clause C is eligible w.r.t. a substitution σ if the literal L is
either negative and eligible or positive and strictly eligible (w.r.t. σ in C); and L is of the
form s ≈̇ t ∈ C such that sσ ̸⪯ tσ.

When we do not specify a substitution, we mean eligibility w.r.t. the identity substitu-
tion.

2.4. Concrete Term Orders. A companion article [3] defines two concrete term orders
fulfilling the criteria of Definition 2.12: λKBO, inspired by the Knuth–Bendix order, and
λLPO, inspired by the lexicographic path order. Since the companion article defines the
orders only on terms, we extend ≻ykbo and ≻ylpo to literals and clauses via the standard
extension using multisets [1, Sect. 2.4].

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 9

Theorem 2.16. Let ≻ykbo denote the strict variant of λKBO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols, a function w
assigning weights to symbols, a constant wdb defining the weight of De Bruijn indices, and a
function k assigning argument coefficients to symbols. Assume that these parameters fulfill
w(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = w(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) = 1, wdb ≥ w(diff), f > ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ > ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all symbols f /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, and k (diff, i) = 1
for every i. Using the extension defined above, ≻ykbo is an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.11 and 5.11 of the companion
article, ≻gykbo is the restriction of ≻ykbo to ground terms.

(O1) By Theorems 3.8 and 3.10 of the companion article, ≻gykbo is a total order. By
Theorem 3.11 of the companion article, it is well founded.

(O2) By Theorem 3.14 of the companion article, ≻gykbo is compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.15 of the companion article, ≻gykbo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.16 of the companion article, u ≻gykbo ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻gykbo ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms
u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, using our assumptions about the weight and precedence of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

(O5) By Theorem 3.17 of the companion article, u ≻gykbo u diff⟨τ, υ⟩(s, t) for all ground types
τ, υ and ground terms s, t, u : τ → υ, using our assumptions about the weight and
argument coefficients of diff.

(O6) By definition of our extension of ≻ykbo to clauses.
(O7) By Theorems 4.10 and 5.10 of the companion article.
(O8) Using the Dershowitz–Manna definition [12] of a multiset, it is easy to see that stability

under substitutions for terms implies stability under substitutions for clauses.
(O9) By Theorem 5.13 of the companion article, ≻ykbo is transitive on terms. Since the

multiset extension preserves transitivity, it is also transitive on literals.

Theorem 2.17. Let ≻ylpo denote the strict variant of λLPO as defined in the companion
article. The order is parameterized by a precedence relation > on symbols and a watershed
symbol ws. Assume that f > ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ > ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all symbols f /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, that ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≤ ws, and that
diff ≤ ws. Using the extension defined above, ≻ylpo is an admissible term order.

Proof. For most of the criteria, we use that by Theorems 4.20 and 5.17 of the companion
article, ≻gylpo is the restriction of ≻ylpo to ground terms.

(O1) By Theorems 3.21 and 3.22 of the companion article, ≻gylpo is a total order. By
Theorem 3.23 of the companion article, it is well founded.

(O2) By Theorem 3.24 of the companion article, ≻gylpo is compatible with orange contexts
and thus also with yellow contexts.

(O3) By Theorem 3.25 of the companion article, ≻gylpo enjoys the orange subterm property
and thus also the yellow subterm property.

(O4) By Theorem 3.26 of the companion article, u ≻gylpo ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻gylpo ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms
u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}, using our assumptions about the precedence of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

(O5) By Theorem 3.27 of the companion article, u ≻gylpo u diff⟨τ, υ⟩(s, t) for all ground types
τ, υ and ground terms s, t, u : τ → υ, using our assumption about the precedence of diff.

(O6) By definition of our extension of ≻ylpo to clauses.
(O7) By Theorems 4.19 and 5.16 of the companion article.

10 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

(O8) Using the Dershowitz–Manna definition [12] of a multiset, it is easy to see that stability
under substitutions for terms implies stability under substitutions for clauses.

(O9) By Theorem 5.19 of the companion article, ≻ylpo is transitive on terms. Since the
multiset extension preserves transitivity, it is also transitive on literals.

2.5. The Core Inference Rules. The calculus is parameterized by an admissible term
order ≻ and a selection function hsel . We denote this calculus as HInf ≻,hsel or just HInf .

Each of our inference rules describes a collection of inferences, which we formally define
as follows:

Definition 2.18. An inference ι is a tuple (C1, C2, . . . , Cn+1) of clauses, written

C1 C2 · · · Cn

Cn+1

The clauses C1, C2, . . . , Cn are called premises, denoted by prems(ι), and Cn+1 is called
conclusion, denoted by concl(ι). The clause Cn is called the main premise of ι, denoted
by mprem(ι). We assume that the premisses of an inference do not have any variables in
common, which can be achieved by renaming them apart when necessary.

Our variant of the superposition rule, originating from the standard superposition
calculus, is stated as follows:

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C u

Sup
(D′ ∨ C t′)σ

1. σ ∈ CSU(t ≡ u);
2. u is not a variable, unless there exists another occurrence of that variable inside of a

parameter in C;
3. uσ is nonfunctional;
4. tσ ̸⪯ t′σ;
5. the position of u is eligible in C w.r.t. σ;
6. t ≈ t′ is strictly maximal in D w.r.t. σ;
7. there are no selected literals in D.

The rule FluidSup simulates superposition below applied variables:
D︷ ︸︸ ︷

D′ ∨ t ≈ t′ C u
FluidSup

(D′ ∨ C z t′)σ

with the following side conditions, in addition to Sup’s conditions 3 to 7:

1. σ ∈ CSU(z t ≡ u);
2. u is variable-headed, and if u is a variable, then there exists another occurrence of that

variable inside of a parameter in C;
8. z is a fresh variable;
9. (z t)σ ̸= (z t′)σ;

10. zσ ̸= λ 0.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 11

The equality resolution rule EqRes and the equality factoring rule EqFact also originate
from the standard superposition calculus:

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u′

EqRes
C ′σ

C︷ ︸︸ ︷
C ′ ∨ u′ ≈ v′ ∨ u ≈ v

EqFact
(C ′ ∨ v ̸≈ v′ ∨ u ≈ v′)σ

Side conditions for EqRes:

1. σ ∈ CSU(u ≡ u′);
2. u ̸≈ u′ is eligible in C w.r.t. σ.

Side conditions for EqFact:

1. σ ∈ CSU(u ≡ u′);
2. u ≈ v is eligible in C w.r.t. σ;
3. there are no selected literals in C;
4. uσ ̸⪯ vσ.

The following rules Clausify, BoolHoist, LoobHoist, and FalseElim are responsi-
ble for converting Boolean terms into clausal form. The rules BoolHoist and LoobHoist
each come with an analogue, respectively called FluidBoolHoist and FluidLoobHoist,
which simulates their application below applied variables.

C ′ ∨ s ≈ t
Clausify

(C ′ ∨ D)σ

with the following side conditions:

1. σ ∈ CSU(s ≡ s′, t ≡ t′);
2. s ≈ t is strictly eligible in C w.r.t. σ;
3. s is not a variable, unless there exists an occurrence of that variable inside of a parameter

in C;
4. the triple (s′, t′, D) is one of the following, where α is a fresh type variable and x and y

are fresh term variables:

(x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (x ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (x →→→→→→→→→→→→→→→→→→→→→→→→→ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨α⟩ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ y) (x ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨α⟩ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ̸≈ y)

(x ̸≈⟨α⟩ y, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ̸≈ y) (x ̸≈⟨α⟩ y, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ y)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬x, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬x, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

C u
BoolHoist

(C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ

C u
LoobHoist

(C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

each with the following side conditions:

1. σ is the most general type substitution such that uσ is of Boolean type (i.e., the identity
if u is of Boolean type or {α 7→ o} if u is of type α for some type variable α);

2. u is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and if u is a variable, there exists another occurrence of that variable
inside of a parameter in C;

3. the position of u is eligible in C w.r.t. σ;

12 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

4. the occurrence of u is not in a literal of the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

C u
FluidBoolHoist

(C z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)σ

1. u is variable-headed, and if u is a variable, there exists another occurrence of that variable
inside of a parameter in C;

2. uσ is nonfunctional;
3. x is a fresh variable of Boolean type, and z is a fresh variable of function type from

Boolean to the type of u;
4. σ ∈ CSU(z x ≡ u);
5. (z ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ ̸= (z x)σ;
6. zσ ̸= λ 0;
7. xσ ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and xσ ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
8. the position of u is eligible in C w.r.t. σ.

C u
FluidLoobHoist

(C z ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)σ

with the same side conditions as FluidBoolHoist, but where ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is replaced by ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ in
condition 5.

C︷ ︸︸ ︷
C ′ ∨ s ≈ t

FalseElim
C ′σ

with the following side conditions:

1. σ ∈ CSU(s ≡ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, t ≡ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤);
2. s ≈ t is strictly eligible in C w.r.t. σ.

The argument congruence rule ArgCong and the extensionality rule Ext convert
functional terms into nonfunctional terms. The rule Ext also comes with an analogue
FluidExt, which simulates its application below applied variables.

C︷ ︸︸ ︷
C ′ ∨ s ≈ s′

ArgCong
C ′σ ∨ sσ x ≈ s′σ x

with the following side conditions:

1. σ is the most general type substitution such that sσ is functional (i.e., the identity if s is
functional or {α 7→ (β → γ)} for fresh β and γ if s is of type α for some type variable α);

2. s ≈ s′ is strictly eligible in C w.r.t. σ;
3. x is a fresh variable.

C u
Ext

Cσ y ∨ uσ (diff⟨τ, υ⟩(uσ, y)) ̸≈ y (diff⟨τ, υ⟩(uσ, y))
with the following side conditions:

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 13

1. σ is the most general type substitution such that uσ is of type τ → υ for some τ and υ;
2. y is a fresh variable of the same type as uσ;
3. the position of u is eligible in C w.r.t. σ.

C u
FluidExt

(C z y ∨ x (diff⟨α, β⟩(x, y)) ̸≈ y (diff⟨α, β⟩(x, y)))σ
with the following side conditions:

1. u is variable-headed;
2. uσ is nonfunctional;
3. x and y are fresh variables of type α → β, and z is a fresh variable of function type from

α → β to the type of u;
4. σ ∈ CSU(S, z x ≡ u);
5. (z x)σ ̸= (z y)σ;
6. zσ ̸= λ 0;
7. the position of u is eligible in C w.r.t. σ.

Our calculus also includes the following axiom (i.e., nullary inference rule), which
establishes the interpretation of the extensionality Skolem constant diff.

Diff
y (diff⟨α, β⟩(y, z)) ̸≈ z (diff⟨α, β⟩(y, z)) ∨ y x ≈ z x

2.6. Redundancy. Our calculus includes a redundancy criterion that can be used to delete
certain clauses and avoid certain inferences deemed redundant. The criterion is based on a
translation to ground monomorphic first-order logic.

Let Σ be a higher-order signature. We require Σ to contain a symbol diff : Πα, β.(α → β,
α → β) ⇒ α. Based on this higher-order signature, we construct a first-order signature F (Σ)
as follows. The type constructors are the same, but → is an uninterpreted symbol in the
first-order logic. For each ground higher-order term of the form f⟨τ̄⟩(ū) : τ1 → · · · → τm → τ ,
with m ≥ 0, we introduce a first-order symbol f τ̄ū : τ1×· · ·× τm ⇒ τ . Moreover, we introduce
a first-order symbol funt : τ → υ for each higher-order term t of type τ → υ.

We define an encoding F from higher-order ground terms to first-order terms:

Definition 2.19. For ground terms t, we define F recursively as follows: If t is functional,
then let F (t) = funt. Otherwise, t is of the form f⟨τ̄⟩(ū) t̄m, and we define F (t) =
f τ̄ū(F (t̄1), . . . ,F (t̄m)).

For clauses, we apply F on each side of each literal individually.

Lemma 2.20. The map F is a bijection between higher-order ground terms and first-order
ground terms.

Proof. We can see that F (s) = F (t) implies s = t for all ground s and t by structural
induction on F (s). Moreover, we can show that for each first-order ground term t, there
exists an s such that F (s) = t by structural induction on t. Injectivity and surjectivity
imply bijectivity.

We consider two different semantics for our first-order logic: |=fol and |=oλ. The
semantics |=fol is the standard semantics of first-order logic. The semantics |=oλ restricts
|=fol to interpretations I with the following properties:

14 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

– Interpreted Booleans: The domain of the Boolean type has exactly two elements, J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KI and
J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KI, and the symbols ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ , ̸≈τ are interpreted as the corresponding logical
operations.

– Extensionality w.r.t. diff: For all ground u,w : τ → υ, if I |=fol F (u diff⟨τ, υ⟩(s, t)) ≈
F (w diff⟨τ, υ⟩(s, t)) for all ground s, t : τ → υ, then I |=fol F (u) ≈ F (w).

– Argument congruence w.r.t. diff: For all ground u,w, s, t : τ → υ, if I |=fol F (u) ≈ F (w),
then I |=fol F (u diff⟨τ, υ⟩(s, t)) ≈ F (w diff⟨τ, υ⟩(s, t)).

2.6.1. Clause Redundancy. Our redundancy criterion for clauses provides two conditions
that can make a clause redundant. The first condition applies when the ground instances
of a clause are entailed by smaller ground instances of other clauses. It generalizes the
standard superposition redundancy criterion to higher-order clauses. The second condition
applies when there are other clauses with the same ground instances. It can be used to
justify subsumption. For this second condition, we fix a well-founded partial order ⊐ on
CH, which prevents infinite chains of clauses where each clause is made redundant by the
next one. For example, following Bentkamp et al. [7, Sect. 3.4], a sensible choice is to define
C ⊐ D if either C is larger than D in syntactic size (i.e., number of variables, constants,
and De Bruijn indices), or if C and D have the same syntactic size and C contains fewer
distinct variables than D.

Definition 2.21. Since F is bijective on ground terms by Lemma 2.20, we can convert
a term order ≻ on higher-order terms into a relation ≻F on ground first-order terms as
follows. For two ground first-order terms s and t, let s ≻F t if F −1(s) ≻ F −1(t).

Definition 2.22 (Clause Redundancy). Given a clause C and a clause set N , let C ∈
HRedC(N) if for each grounding substitution θ at least one of the following two conditions
holds:

1. {E ∈ F (G(N)) | E ≺F F (Cθ)} |=oλ F (Cθ); or
2. there exists a clause D ∈ N and a grounding substitution ρ such that C ⊐ D and

Dρ = Cθ.

2.6.2. Inference Redundancy. To define inference redundancy, we first define a calculus
FInf on ground first-order logic with Booleans. It is parameterized by a relation ≻ on

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 15

ground first-order terms and a selection function on ground first-order clauses.

D︷ ︸︸ ︷
D′ ∨ t ≈ t′ C[t]

FSup
D′ ∨ C[t′]

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u

FEqRes
C ′

C︷ ︸︸ ︷
C ′ ∨ u ≈ v′ ∨ u ≈ v

FEqFact
C ′ ∨ v ̸≈ v′ ∨ u ≈ v

C ′ ∨ s ≈ t
FClausify

C ′ ∨ D

C[u]
FBoolHoist

(C[⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥] ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

C[u]
FLoobHoist

C[⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤] ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
C︷ ︸︸ ︷

C ′ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
FFalseElim

C ′

C︷ ︸︸ ︷
C ′ ∨ F (s) ≈ F (s′)

FArgCong
C ′ ∨ F (s diff⟨τ, υ⟩(u,w)) ≈ F (s′ diff⟨τ, υ⟩(u,w))

C[F (u)]
FExt

C[F (w)] ∨ F (u diff⟨τ, υ⟩(u,w)) ̸≈ F (w diff⟨τ, υ⟩(u,w))

FDiff
F (u diff⟨τ, υ⟩(u,w)) ̸≈ F (w diff⟨τ, υ⟩(u,w)) ∨ F (u s) ≈ F (w s)

Side conditions for FSup:

1. t is nonfunctional;
2. t ≻ t′;
3. D ≺ C[t];
4. the position of t is eligible in C;
5. t ≈ t′ is strictly eligible in D;
6. if t′ is Boolean, then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

Side conditions for FEqRes:

1. u ̸≈ u is eligible in C.

Side conditions for FEqFact:

1. u ≈ v is maximal in C;
2. there are no selected literals in C;
3. u ≻ v,

Side conditions for FClausify:

1. s ≈ t is strictly eligible in C ′ ∨ s ≈ t;

16 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

2. The triple (s, t,D) has one of the following forms, where τ is an arbitrary type and u, v
are arbitrary terms:

(u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ v) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ̸≈ v)

(u ̸≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ̸≈ v) (u ̸≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ v)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

Side conditions for FBoolHoistand FLoobHoist:

1. u is of Boolean type
2. u is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
3. the position of u is eligible in C;
4. the occurrence of u is not in a literal L with L = u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or L = u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

Side conditions for FFalseElim:

1. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ is strictly eligible in C.

Side conditions for FArgCong:

1. s is of type τ → υ;
2. u,w are ground terms of type τ → υ;
3. F (s) ≈ F (s′) is strictly eligible in C.

Side conditions for FExt:

1. the position of F (u) is eligible in C;
2. the type of u is τ → υ;
3. w is a ground term of type τ → υ;
4. u ≻ w.

Side conditions for FDiff:

1. τ and υ are ground types;
2. u,w, s are ground terms.

Definition 2.23. We convert a selection function hsel on higher-order clauses into a selection
function F (hsel) on ground first-order clauses as follows: Let a literal L of a first-order
ground clause C be selected if F −1(L) is selected in F −1(C).

Definition 2.24. Let ι ∈ HInf ≻,hsel for a term order ≻ and a selection function hsel . Let
C1, . . . , Cm be its premises and Cm+1 its conclusion. Let (θ1, . . . , θm+1) be a tuple of
grounding substitutions. We say that ι is rooted in FInf for (θ1, . . . , θm+1) if and only if

F (C1θ1) · · · F (Cmθm)

F (Cm+1θm+1)

is a valid FInf ≻F ,F (hsel) inference ι′ such that the rule names of ι and ι′ correspond up to
the prefixes F and Fluid.

Definition 2.25 (Inference Redundancy). Let N ⊆ CH. Let ι ∈ HInf an inference with
premises C1, . . . , Cm and conclusion Cm+1. We define HRed I so that ι ∈ HRed I(N) if for
all substitutions (θ1, . . . , θm+1) for which ι is rooted in FInf (Definition 2.24), we have

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 17

– ι is a Diff inference and F (G(N)) |=oλ F (Cm+1θm+1); or
– ι is some other inference and {E ∈ F (G(N)) | E ≺F F (Cmθm)} |=oλ F (Cm+1θm+1).

2.7. Simplification Rules.

2.7.1. Analogues of First-Order Simplification Rules. Our notion of clause redundancy
(Definition 2.22) can justify most analogues of the simplification rules implemented in Schulz’s
E prover [19, Sections 2.3.1 and 2.3.2]. Deletion of duplicated literals, deletion of resolved
literals, syntactic tautology deletion, positive simplify-reflect, and negative simplify-reflect
adhere to our redundancy criterion. Semantic tautology deletion can be applied as well, but
we must use the entailment relation |=oλ under the encoding F .

Our analogue of clause subsumption is the following.

C Cσ ∨ D
Subsumption

C

with the following side condition:

1. D ̸= ⊥ or Cσ ⊐ C.

Lemma 2.26. Subsumption can be justified by clause redundancy.

Proof. Let θ be a grounding substitution. If D is nonempty, we apply condition 1 of
Definition 2.22, which holds because the clause Cσθ is a proper subclause of (Cσ ∨ D)θ
and therefore F (Cσθ) |=oλ F ((Cσ ∨ D)θ) and Cσθ ≺ (Cσ ∨ D)θ. If D = ⊥, we apply
condition 2 of Definition 2.22, which holds by condition 1 of Subsumption.

For rewriting of positive and negative literals (demodulation) and equality subsumption,
we need to establish the following properties of orange subterms first:

Lemma 2.27. Let ↓βη be a βη-normalizer. An orange subterm relation u s p w.r.t. ↓βη
can be disassembled into a sequence s1 . . . sk as follows: s1 is a green subterm of u; sk = s;
and for each i < k, si = λ s′i and si+1 is a green subterm of s′i.

Proof. By induction on the size of u in η-long form.
If each orange subterm at a proper prefix of p is nonfunctional, then p is green, and we

are done with k = 1 and s1 = s.
Otherwise, let p = q.r such that q is the shortest prefix with nonempty r, where the

orange subterm s1 at q is functional. Then s1 is a green subterm of u at q because there does
not exist a shorter prefix with a functional orange subterm. Moreover, since s1 is functional,
modulo η-conversion, s1 = λs′1 for some s′1. Since r is nonempty and s is the orange subterm
of s1 at r, there exists r′ at most as long as r such that s is the orange subterm of s′1 at
r′. Specifically, if s1↓βη is a λ-abstraction, we use 1.r′ = r and otherwise r′ = r. By the
induction hypothesis, since s is an orange subterm of s′1, there exist s2, . . . , sk with sk = s
such that si = λ s′i and si+1 is a green subterm of s′i for each i < k.

Lemma 2.28. Let ↓βη be a βη-normalizer. Let u be a ground term, and let p be an orange
position of u w.r.t. ↓βη. Let v, v′ be ground preterms such that u v p and u v′ p are terms.

18 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Let k be a number large enough such that v{(0, . . . , k− 1) 7→ t̄k} and v′{(0, . . . , k− 1) 7→ t̄k}
do not contain free De Bruijn indices for all tuples of terms t̄k. Then

{F (v{(0, . . . , k − 1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k}) | each ti of the form diff⟨ , ⟩(,)}
|=oλ F (u v p ≈ u v′ p)

Proof. Let I be a |=oλ-interpretation with

I |=oλ F (v{(0, . . . , k − 1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k})
for all tuples of terms t̄k, where each ti is of the form diff⟨ , ⟩(,) for arbitrary values of ‘ ’.
By Lemma 2.27, we have u v p = u λ w1 λ w2 · · ·wn v · · · .

Step 1. Since v is a green subterm of wn v and the terms t̄k have a form that does not
trigger β-reductions when substituting them for De Bruijn indices, v{(0, . . . , k − 1) 7→ t̄k} is
a green subterm of wn v {(0, . . . , k − 1) 7→ t̄k} and thus

I |=oλ F (wn v {(0, . . . , k − 1) 7→ t̄k} ≈ wn v′ {(0, . . . , k − 1) 7→ t̄k})

Step 2. Using the property of extensionality w.r.t. diff of |=oλ-interpretations and using
the fact that we have shown the above for all t1 of the form diff⟨ , ⟩(,), we obtain

I |=oλ F ((λ wn v){0 7→ t2, . . . , (k − 2) 7→ tk} ≈ (λ wn v′){0 7→ t2, . . . , (k − 2) 7→ tk})
Iterating steps 1 and 2 over wn, . . . , w1, u, we obtain

I |=oλ F (u v p ≈ u v′ p)

Our variant of rewriting of positive and negative literals (demodulation) is the following.

t ≈ t′ C v
Demod

t ≈ t′ C v′

with the following side conditions:

1. tσ = v{(0, . . . , k − 1) 7→ x̄k} and t′σ = v′{(0, . . . , k − 1) 7→ x̄k} for some fresh variables
x̄k and a substitution σ.

2. C v ≻ C v′ ;
3. for each tuple t̄k, where each ti is of the form diff⟨ , ⟩(,), we have C v ≻ v{(0, . . . , k−

1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k};

Remark 2.29. In general, it is unclear how to compute condition 3 of Demod. For λKBO
and λLPO described in Section 2.4, however, the condition can easily be overapproximated
by C v ≻ v ≈ v′, using the fact that the orders are also defined on preterms.

To prove that this is a valid overapproximation, it suffices to show the following: Let
u and s be preterms with u ≻ s (resp. u ≿ s). Let s′ be the result of replacing some De
Bruijn indices in s by terms of the form diff⟨ , ⟩(,). Then u ≻ s′ (resp. u ≿ s′).

Proof for λKBO: By induction on the rule deriving u ≻ s or u ≿ s. Since we assume in
Section 2.4 that wdb ≥ w(diff) and k (diff, i) = 1 for every i, we have W (s) ≥ W (s′). It is
easy to check that there is always a corresponding rule deriving u ≻ s′ or u ≿ s′, in some
cases using the induction hypothesis.

Proof for λLPO: By induction on the rule deriving u ≻ s or u ≿ s. Considering that we
assume in Section 2.4 that ws ≥ diff, it is easy to check that there is always a corresponding
rule deriving u ≻ s′ or u ≿ s′, in some cases using the induction hypothesis.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 19

Since Demod makes use of orange subterms, it depends on the choice of βη-normalizer.
Both ↓βηlong and ↓βηshort yield a valid simplification rule:

Lemma 2.30. Demod can be justified by clause redundancy, regardless of the choice of
βη-normalizer.

Proof. Let θ be a grounding substitutiion. We apply condition 1 of Definition 2.22, using
C v for C. Let T = {t̄k | each ti is a ground term of the form diff⟨ , ⟩(,)} and let
ρt̄k = σ{x̄k 7→ t̄k}θ for each t̄k ∈ T . By condition 1 of Demod,

(t ≈ t′)ρt̄k = v{(0, . . . , k − 1) 7→ t̄k}θ ≈ v′{(0, . . . , k − 1) 7→ t̄k}θ
= vθ{(0, . . . , k − 1) 7→ t̄k} ≈ v′θ{(0, . . . , k − 1) 7→ t̄k}

for each tuple t̄k ∈ T .
By Lemma 2.28, F ({(t ≈ t′)ρt̄k | t̄k ∈ T}) |=oλ F (uθ vθ ≈ uθ v′θ), where u is a

side of a literal in C v containing the orange subterm v. Thus

F ({(t ≈ t′)ρt̄k | t̄k ∈ T}) ∪ {F (C v′ θ)} |=oλ F (C v θ)

Condition 2 of Demod implies C v′ θ ≺ C v θ. Condition 3 of Demod implies (t ≈
t′)ρt̄k ≺ C v θ for all t̄k ∈ T . Thus condition 1 of Definition 2.22 applies.

Our variant of equality subsumption is the following:

t ≈ t′ C ′ ∨ s v ≈ s′ v′

EqualitySubsumption
t ≈ t′

with the following side conditions:

1. tσ = v{(0, . . . , k − 1) 7→ x̄k} and t′σ = v′{(0, . . . , k − 1) 7→ x̄k} for some fresh variables
x̄k and a substitution σ;

2. for each tuple t̄, where each ti is of the form diff⟨ , ⟩(,), we have C v ≻ v{(0, . . . , k−
1) 7→ t̄k} ≈ v′{(0, . . . , k − 1) 7→ t̄k};

To compute condition 2, we can exploit Remark 2.29.

Lemma 2.31. EqualitySubsumption can be justified by simple clause redundancy, re-
gardless of the choice of βη-normalizer.

Proof. Analogous to Lemma 2.30.

2.7.2. Additional Simplification Rules. The core inference rules ArgCong, Clausify,
FalseElim, LoobHoist, and BoolHoist described in Section 2.5 can under certain
conditions be applied as simplification rules.

Lemma 2.32. ArgCong can be justified as a simplification rule by clause redundancy
when σ is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. Let θ be a grounding substitution. We apply condition 1 of Definition 2.22. Let
τ → υ be the type of sθ and s′θ. By the extensionality property of |=oλ, we have

{F ((C ′ ∨ s x ≈ s′ x)θ[x 7→ diff⟨τ, υ⟩(u,w)]) | u,w : τ → υ ground} |=oλ F ((C ′ ∨ s ≈ s′)θ)

By (O5), we have (C ′ ∨ s′ x ≈ s x)θ[x 7→ diff⟨τ, υ⟩(u,w)] ≺ (C ′ ∨ s ≈ s′)θ for all such τ , υ,
u, and w. Thus condition 1 of Definition 2.22 applies.

20 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Lemma 2.33. Clausify can be justified as a simplification rule by clause redundancy when
σ is the identity for all variables other than x and y. Moreover, it can even be applied when
its eligibility condition does not hold.

Proof. By condition 1 of Definition 2.22, using the fact that |=oλ interprets Booleans.

Lemma 2.34. FalseElim can be justified as a simplification rule by clause redundancy
when σ is the identity. Moreover, it can even be applied when its eligibility condition does
not hold.

Proof. By condition 1 of Definition 2.22, using the fact that |=oλ interprets Booleans.

Lemma 2.35. BoolHoist and LoobHoist can be justified to be applied together as a
simplification rule by clause redundancy when σ is the identity. Moreover, they can even be
applied when their eligibility condition does not hold.

Proof. By condition 1 of Definition 2.22, using the fact that |=oλ interprets Booleans.

The following two rules normalize negative literals with ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ into positive literals.

C ′ ∨ s ̸≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
NotTrue

C ′ ∨ s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

C ′ ∨ s ̸≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
NotFalse

C ′ ∨ s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

Lemma 2.36. NotTrue and NotFalse can be justified as simplification rules by simple
clause redundancy.

Proof. By condition 1 of Definition 2.22, using the fact that |=oλ interprets Booleans.

The following rule is inspired by one of Leo-II’s extensionality rules [8]:

C︷ ︸︸ ︷
C ′ ∨ s ̸≈ s′

NegExt
C ′ ∨ s diff⟨τ, υ⟩(s, s′) ̸≈ s′ diff⟨τ, υ⟩(s, s′)

Lemma 2.37. NegExt can be justified by simple clause redundancy.

Proof. Let θ be a grounding substitution. We apply condition 1 of Definition 2.22. By the
argument congruence property of |=oλ, we have

F ((C ′ ∨ s diff⟨τ, υ⟩(s, s′) ̸≈ s′ diff⟨τ, υ⟩(s, s′))θ) |=oλ F ((C ′ ∨ s ̸≈ s′)θ)

By (O5), we have (C ′ ∨ s′ diff⟨τ, υ⟩(s, s′) ̸≈ s diff⟨τ, υ⟩(s, s′))θ ≺ (C ′ ∨ s ̸≈ s′)θ. Thus
condition 1 of Definition 2.22 applies.

2.8. Examples. In this subsection, we illustrate the various rules of our calculus on concrete
examples. For better readability, we use nominal λ notation.

Example 2.38 (Selection of Negated Predicates). This example demonstrates the value
of allowing selection of literals of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Although the original λ-superposition
calculus was claimed to support selection of such literals, its completeness proof was flawed
in this respect [4, 17].

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 21

Consider the following clause set:

(1) p a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(2) q b ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(3) r c ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(4) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

Let us first explore what happens without literal selection. Due to the variables in (4), all of
the literals in (4) are incomparable w.r.t. any term order. So, since none of the literals is
selected, there are three possible Sup inferences: (1) into (4), (2) into (4), and (3) into (4).
After applying FalseElim to their conclusions, we obtain:

(5) q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(6) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

For each of these clauses, we can again apply a Sup inference using (1), (2), or (3), in two
different ways each. After applying FalseElim to their conclusions, we obtain three more
clauses: p x ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, q y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. From each of these clauses, we can then derive
the empty clause by another Sup and FalseElim inference. So, without literal selection,
depending on the prover’s heuristics, a prover might in the worst case need to perform
3 + 3 · 2 + 1 = 10 Sup inferences to derive the empty clause.

Now, let us consider the same initial clause set but we select exactly one literal whenever
possible. In (4), we can select one of the literals, say the first one. Then there is only one
possible Sup inference: (1) into (4), yielding (5) after applying FalseElim. In (5), we can
again select the first literal. Again, only one Sup inference is possible, yielding r z ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
after applying FalseElim. Another Sup and another FalseElim inference yield the empty
clause. Overall, there is a unique derivation of the empty clause, consisting of only three
Sup inferences.

Example 2.39 (Simplification of Functional Literals). Consider the following clauses, where
f and g are constants of type ι → ι.

(1) f ≈ g

(2) f ̸≈ g

A Sup inference from (1) into (2) is not possible because the terms are functional. Instead,
we can apply ArgCong and NegExt to derive the following clauses:

(3) f x ≈ g x (by ArgCong from (1))

(4) f diff(f, g) ̸≈ g diff(f, g) (by NegExt from (2))

Both ArgCong and NegExt are simplification rules, so we can delete (1) and (2) after
deriving (3) and (4). Now, a Sup inference from (3) into (4) and a EqRes inference yield
the empty clause.

In contrast, the original superposition calculus requires both the Sup inference from (1)
into (2) and also a derivation similar to the one above. Moreover, its redundancy criterion
does not allow us to delete (1) and (2). This amounts to doubling the number of clauses
and inferences—even more if f and g had more than one argument.

22 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Example 2.40 (Extensionality Reasoning). Consider the following clauses:

(1) map (λu. sqrt (add u 1)) x ̸≈ map (λu. sqrt (add 1 u)) x

(2) add u v ≈ add v u

For better readability, we omit type arguments and use subscripts for the parameters of diff.
Using our calculus, we derive the following clauses:

(3) sqrt (add (diffλu. sqrt (add u 1),z) 1) ̸≈ z (diffλu. sqrt (add u 1),z) ∨
map z x ̸≈ map (λu. sqrt (add 1 u)) x (by Ext from (1))

(4) sqrt (add diffλu. sqrt (add u 1),λu. sqrt (add 1 u) 1) ̸≈
sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) (by EqRes from (3))

(5) sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) ̸≈
sqrt (add 1 diffλu. sqrt (add u 1),λu. sqrt (add 1 u)) (by Sup from (2), (4))

(6) ⊥ (by EqRes from (5))

While such a derivation is also possible in the original λ-superposition calculus, the term
orders of the original calculus were not able to compare the literals of the extensionality
axiom

y diffy,z ̸≈ z diffy,z ∨ y ≈ z

As a result, the extensionality axiom leads to an explosion of inferences. Our calculus avoids
this problem by ensuring that the positive literal of the extensionality axiom is maximal, via
the ordering property (O5). By replacing the extensionality axiom with the Ext rule, we
avoid in addition Sup inferences into functional terms, and it strengthens our redundancy
criterion.

Example 2.41 (Universal Quantification). Consider the following clause set:

(1) (λx. p x) ≈ (λx. ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(2) p a ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

Here, clause (1) encodes the universal quantification ∀x. p x. We can derive a contradiction
as follows:

(3) p x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (by ArgCong from (1))

(4) ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by Sup from (2), (3))

(5) ⊥ (by FalseElim from (4))

Since the ArgCong inference creating clause (3) can be used as a simplification rule by
Lemma 2.32, clause (1) can be deleted when creating clause (3). So we do not need to apply
any Ext inferences into clause (1). Except for inferences into (1) and except for a Diff
inference, the inferences required in the derivation above are the only ones possible. In this
sense, the encoding of the universal quantifier using λ-abstractions has no overhead.

Example 2.42 (Existential Quantification). Negated universal quantification or existential
quantification can be dealt with similarly. Consider the following clause set:

(1) (λx. p x) ̸≈ (λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(2) p x ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 23

We can derive a contradiction as follows:

(3) p diff⟨ι, o⟩(λx. p x, λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) ̸≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ (by NegExt from (1))

(4) p diff⟨ι, o⟩(λx. p x, λx.⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by NotTrue from (3))

(5) ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ (by Sup from (2), (4))

(6) ⊥ (by FalseElim from (5))

Again, we can delete (1) when creating (3), preventing any Ext inferences from (1). Moreover,
we can delete (3) when creating (4). As a result, encoding existential quantification using
λ-abstraction does not have overhead either.

Example 2.43. This example illustrates why condition 2 of Sup allows u to be a variable
if it has another occurrence inside of a parameter. Consider the following clause set:

(1) b ≈ a

(2) (λx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x y ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y ̸≈ a)) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(3) (λx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≈ a)) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

Note that the clauses (λx. . . .) ̸≈ (λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) can be read as ∃x. . . . and that (3) is an instance
of (2). Clauses (1) and (3) alone are unsatisfiable because (1) ensures that the right side of
the disjunction p x b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≈ a in (3) is false, and since (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (p x b) is clearly false, clause
(3) is false.

For the following derivation, we assume b ≻ a. Applying NegExt to (2) and (3) followed
by NotFalse yields

(4) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ y ̸≈ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(5) ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ b ̸≈ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

For better readability, we omit the type arguments and write the parameters of diff as
subscripts. Applying Clausify several times yields

(6) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ̸≈ a

(8) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(9) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ b ̸≈ a

By positive simplify-reflect on (9), followed by Demod from (1) into the resulting clause,
we obtain the clause

(10) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

In this derivation, (2), (3), (4), (5), and (9) can be deleted because NegExt, NotFalse,
Clausify, Demod, and positive simplify-reflect can be applied as simplification rules.
Moreover, (8) can be deleted by Subsumption using (6) and a suitable relation ⊐.The
following clauses remain:

(1) b ≈ a

(6) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
(7) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x y)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x y∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨y ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ y ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ y ̸≈ a

(10) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ a ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

24 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Assuming that the negative literal in (7) is selected and that b ≻ a, we now need a Sup
inference from (1) into the variable y in the second literal of (7), which is possible because y
also appears in a parameter in (7). This Sup inference yields:

(11) p diffλx. (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬p x b)∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧(p x b∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨b ̸≈a),λx. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ b ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ a ̸≈ a

The empty clause can then be derived using EqRes, a Sup inference with (6), and
FalseElim.

3. Soundness

To prove our calculus sound, we need a substitution lemma for terms and clauses, which our
logic fulfills:

Lemma 3.1 (Substitution Lemma). Let θ be a substitution, and let t be a term of type τ .
For any proper interpretation I = (Ity, J,L) and any valuation ξ,

JtθKξI = JtKξ
′

I

where the modified valuation ξ′ is defined by ξ′ty(α) = JαθKξtyIty
for type variables α and

ξ′te(x) = JxθKξI for term variables x.

Proof. By induction on the size of the term t.

Case t = x⟨τ⟩:

JtθKξI = JxθKξI
= ξ′(x) (by the definition of interpretation)

= JxKξ
′

I (since x is mapped to JxθKξI)
= JtKξ

′

I

Case t = f⟨τ̄⟩(ū):

JtθKξI = Jf⟨τ̄ θ⟩(ūθ)KξI
= J (f, Jτ̄ θKξtyIty

, JūθKξI) (by definition)

= J (f, Jτ̄K
ξ′ty
Ity
, JūKξ

′

I) (by induction hypothesis)

= Jf⟨τ̄⟩(ū)Kξ
′

I (by definition)

= JtKξ
′

I

Case t = s v:

JtθKξI = Jsθ vθKξI
= JsθKξI (JvθK

ξ
I) (by definition)

= JsKξ
′

I (JvKξ
′

I) (by induction hypothesis)

= Js vKξ
′

I (by definition)

= JtKξ
′

I

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 25

Case t = λ⟨τ⟩ u:
JtθKξI(a) = Jλ⟨τθ⟩ uθKξI(a)

= Juθ{0 7→ x}K(ξty,ξte[x 7→a])
I (since I is proper; for some fresh variable x)

= Ju{0 7→ x}θK(ξty,ξte[x 7→a])
I

= Ju{0 7→ x}K(ξ
′
ty,ξ

′
te[x 7→a])

I (by induction hypothesis)

= Jλ⟨τ⟩ uKξ
′

I (a) (since I is proper)

= JtKξ
′

I (a)

Lemma 3.2 (Substitution Lemma for Clauses). Let θ be a substitution, and let C be a
clause. For any proper interpretation I = (Ity, J,L) and any valuation ξ, Cθ is true w.r.t. I
and ξ if and only if C is true w.r.t. I and ξ′, where the modified valuation ξ′ is defined by
ξ′ty(α) = JαθKξtyIty

for type variables α and ξ′te(x) = JxθKξI for term variables x.

Proof. By definition of the semantics of clauses, Cθ is true w.r.t. I and ξ if and only if one
of its literals is true w.r.t. I and ξ. By definition of the semantics of literals, a positive literal
sθ ≈ tθ (resp. negative literal sθ ̸≈ tθ) of Cθ is true w.r.t. I and ξ if and only if JsθKξI and
JtθKξI are equal (resp. different). By Lemma 3.1, JsθKξI and JtθKξI are equal (resp. different) if
and only if JsKξ

′

I and JtKξ
′

I are equal (resp. different)—i.e., if and only if a literal s ≈ t (resp.
s ̸≈ t) in C is true w.r.t. I and ξ′. This holds if and only if C is true w.r.t. I and ξ′.

Theorem 3.3. All core inference rules are sound w.r.t. |≈ (Definition 1.1). All core inference
rules except for Ext, FluidExt, and Diff are also sound w.r.t. |=. This holds even when
ignoring order, selection, and eligibility conditions.

Proof. We fix an inference and an interpretation I that is a model of the premises. For Ext,
FluidExt, and Diff inferences, we assume that I is diff-aware. We need to show that it
is also a model of the conclusion. By Lemma 3.2, I is a model of the σ-instances of the
premises as well, where σ is the substitution used for the inference. From the semantics of
our logic, it is easy to see that congruence holds at green positions and at the left subterm
of an application. To show that I is a model of the conclusion, it suffices to show that the
conclusion is true under I, ξ for all valuations ξ.

For most rules, it suffices to make distinctions on the truth under I, ξ of the literals
of the σ-instances of the premises, to consider the conditions that σ is a unifier where
applicable, and to apply congruence. For BoolHoist, LoobHoist, FalseElim, Clausify,
FluidBoolHoist, FluidLoobHoist, we also use the fact that I interprets logical symbols
correctly. For Ext, FluidExt, andDiff, we also use the assumption that I is diff-aware.

4. Refutational Completeness

4.1. Logics and Encodings. In our completeness proof, we use two higher-order signatures
and one first-order signature.

Let ΣH be the higher-order signature used by the calculus described in Section 2. It is
required to contain a symbol diff : Πα, β. (α → β, α → β) ⇒ α

Let ΣI be the signature obtained from ΣH in the following way: We replace each
constant with parameters f : Πᾱm. τ̄n ⇒ τ in ΣH with a family of constants f ῡm

t̄n
: τ , indexed

26 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

by all possible ground types ῡm and ground terms t̄n ∈ Tground(ΣH) of type τ̄n{ᾱm 7→ ῡm}.
Constants without parameters (even those with type arguments) are left as they are.

In some contexts, it is more convenient to use terms from Tground(ΣI) instead of

Tground(ΣH) in the subscripts ti of the constants f ῡm
t̄n

. We follow this convention:

Convention 4.1. In the subscripts ti of constants f
ῡm
t̄n

∈ ΣI, we identify each term of the

form f⟨ῡm⟩(t̄n) ∈ Tground(ΣH) with the term f ῡm
t̄n

∈ Tground(ΣI), whenever n > 0.

Similarly, the first-order signatures F (ΣI) and F (ΣH) as defined in Section 2.6 are
almost identical, the only difference being that the subscripts t of the symbols funt ∈ F (ΣH)
may contain symbols with parameters, whereas the subscripts t of the symbols funt ∈ F (ΣI)
may not. To repair this mismatch, we adopt the following convention using the obvious
correspondence between the symbols in F (ΣH) and F (ΣI):

Convention 4.2. In the subscripts of constants funt in F (ΣH) and F (ΣI), we identify each
term of the form f⟨ῡm⟩(t̄n) ∈ Tground(ΣH) with the term f ῡm

t̄n
∈ Tground(ΣI), whenever n > 0.

Using this identification, we can consider the first-order signatures F (ΣH) and F (ΣI) to be
identical.

The table below summarizes our completeness proof’s four levels, each with a set of
terms and a set of clauses. We write TX for the set of terms and CX for the set of clauses of
a given level X:

Level Terms Clauses
F ground first-order terms over F (ΣI) clauses over TF

IG Tground(ΣI) clauses over TIG

G Tground(ΣH) clauses over TG

H T (ΣH) clauses over TH

4.1.1. First-Order Encoding. We use the map F defined in Definition 2.19 both as an
encoding from TIG/CIG to TF/CF and as an encoding from TG/CG to TF/CF. Potential for
confusion is minimal because the two encodings coincide on the values that are in the domain
of both.

Lemma 4.3. A term s ∈ TIG is a green subterm of t ∈ TIG if and only if F (s) is a subterm
of F (t).

Proof. By induction using the definition of F .

4.1.2. Indexing of Parameters.

Definition 4.4 (Indexing of Parameters). The transformation J translates from TG to TIG

by encoding any occurrence of a constant with parameters f⟨ῡ⟩(ū) as f ῡū . Formally:

J(x) = x

J(λ t) = λ J(t)
J(f⟨ῡ⟩ s̄) = f⟨ῡ⟩ J(s̄)

J(f⟨ῡ⟩ (ūk) s̄) = f ῡūk
J(s̄) if k > 0

J(m s̄) = m J(s̄)
We extend J to clauses by mapping each side of each literal individually.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 27

Lemma 4.5. Let t ∈ Tground(ΣH), and let C be a clause over Tground(ΣH). Then F (J (t)) =
F (t) and F (J (C)) = F (C).

Proof. For t, the claim follows directly from the definitions of J (Definition 4.4) and F
(Definition 2.19), relying on the identification of funt and funJ (t) (Convention 4.2). For C,
the claim holds because J and F map each side of each literal individually.

4.2. Calculi. In this section, we define the calculi IGInf and GInf , for the respective levels
IG and G. Both of these calculi are parameterized by a relation ≻ on ground terms and
ground clauses and by a selection function sel . The specific requirements on ≻ depend on
the calculus and are given in the corresponding subsection below.

For the F level, we use the calculus FInf ≻,sel introduced in Section 2.6. We require that
≻ is an admissible term order for FInf in the following sense:

Definition 4.6. Let ≻ be a relation on ground terms and ground clauses. Such a relation
≻ is an admissible term order for FInf if it fulfills the following properties:

(O1)F the relation ≻ on ground terms is a well-founded total order;
(O2)F ground compatibility with contexts: if s′ ≻ s, then s′[t] ≻ s[t];
(O3)F ground subterm property: t[s] ≻ s for ground terms s and t;
(O4)F u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)F F (u) ≻ F (u diffτ,υ

s,t) for all s, t, u : τ → υ ∈ Tground(ΣI);
(O6)F the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];

Remark 4.7. By Lemma 4.5 and because J is a bijection, the rules FArgCong, FExt,
and FDiff, can equivalently be described by using s, s′, u, w from Tground(ΣI) instead of
Tground(ΣH) and replacing diff⟨τ, υ⟩(u,w) with diffτ,υ

u,w.

4.2.1. Indexed Ground Higher-Order Level. The calculus IGInf ≻,sel is parameterized by a
relation ≻ and a selection function sel . We require that ≻ is an admissible term order for
IGInf in the following sense:

Definition 4.8. Let ≻ be a relation on Tground(ΣI), and on clauses over Tground(ΣI). Such
a relation ≻ is an admissible term order for IGInf if it fulfills the following properties:

(O1)IG the relation ≻ on ground terms is a well-founded total order;
(O2)IG ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground

terms s, s′, and t;
(O3)IG ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4)IG u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)IG u ≻ u diffτ,υ

s,t for all ground terms s, t, u : τ → υ.
(O6)IG the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];

The rules of IGInf ≻,sel (abbreviated IGInf) are the following.
D︷ ︸︸ ︷

D′ ∨ t ≈ t′ C t
IGSup

D′ ∨ C t′

28 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

with the following side conditions:

1. t is nonfunctional;
2. t ≻ t′;
3. D ≺ C t ;
4. the position of t is eligible in C;
5. t ≈ t′ is strictly eligible in D;
6. if t′ is Boolean, then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

C︷ ︸︸ ︷
C ′ ∨ u ̸≈ u

IGEqRes
C ′

C︷ ︸︸ ︷
C ′ ∨ u ≈ v′ ∨ u ≈ v

IGEqFact
C ′ ∨ v ̸≈ v′ ∨ u ≈ v′

Side conditions for IGEqRes:

1. u ̸≈ u is eligible in C.

Side conditions for IGEqFact:

1. u ≈ v is maximal in C;
2. there are no selected literals in C;
3. u ≻ v.

C ′ ∨ s ≈ t
IGClausify

C ′ ∨ D

with the following side conditions:

1. s ≈ t is strictly eligible in C ′ ∨ s ≈ t;
2. The triple (s, t,D) has one of the following forms, where τ is an arbitrary type and u, v

are arbitrary terms:

(u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ v ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u →→→→→→→→→→→→→→→→→→→→→→→→→ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, v ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ v) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ̸≈ v)

(u ̸≈τ v, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ̸≈ v) (u ̸≈τ v, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ v)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬u, ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

C u
IGBoolHoist

C ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨ u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
C u

IGLoobHoist
C ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨ u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥

each with the following side conditions:

1. u is of Boolean type;
2. u is neither ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ nor ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
3. the position of u is eligible in C;
4. the occurrence of u is not in a literal of the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 29

C︷ ︸︸ ︷
C ′ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤

IGFalseElim
C ′

with the following side conditions:

1. ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ is strictly eligible in C.

C︷ ︸︸ ︷
C ′ ∨ s ≈ s′

IGArgCong
C ′ ∨ s diffτ,υ

u,w ≈ s′ diffτ,υ
u,w

with the following side conditions:

1. s is of type τ → υ;
2. u,w are ground terms of type τ → υ;
3. s ≈ s′ is strictly eligible in C.

C u
IGExt

C w ∨ u diffτ,υ
u,w ̸≈ w diffτ,υ

u,w

with the following side conditions:

1. the position of u is eligible in C u ;
2. the type of u is τ → υ;
3. w is a ground term of type τ → υ;
4. u ≻ w;

IGDiff
u diffτ,υ

u,w ̸≈ u diffτ,υ
u,w ∨ u s ≈ w s

with the following side conditions:

1. τ and υ are ground types;
2. u,w are ground terms of type τ → υ;
3. s is a ground term of type τ .

4.2.2. Ground Higher-Order Level. Like on the other levels, the calculus GInf is parame-
terized by a relation ≻ and a selection function sel .

Definition 4.9. Let ≻ be a relation on Tground(ΣH)and on clauses over Tground(ΣH). Such
a relation ≻ is an admissible term order for GInf if it fulfills the following properties:

(O1)G the relation ≻ on ground terms is a well-founded total order;
(O2)G ground compatibility with yellow contexts: s′ ≻ s implies t s′ ≻ t s for ground

terms s, s′, and t;
(O3)G ground yellow subterm property: t s ⪰ s for ground terms s and t;
(O4)G u ≻ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≻ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ for all ground terms u /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥};
(O5)G u ≻ u diff⟨τ, υ⟩(s, t) for all ground terms s, t, u : τ → υ.
(O6)G the relation ≻ on ground clauses is the standard extension of ≻ on ground terms

via multisets [1, Sect. 2.4];

30 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

The calculus rules of GInf are a verbatim copy of those of IGInf , with the following
exceptions:

– GInf uses ΣH instead of ΣI and CG instead of CIG.
– The rules are prefixed by G instead of IG.
– GArgCong uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ

u,w.
– GExt uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ

u,w.
– GDiff uses diff⟨τ, υ⟩(u,w) instead of diffτ,υ

u,w.

4.3. Redundancy Criteria and Saturation. In this subsection, we define redundancy
criteria for the levels F, IG, and G and show that saturation up to redundancy on one level
implies saturation up to redundancy on the previous level. We will use these results in
Section 4.4 to lift refutational completeness from level F to level H.

Definition 4.10. A set N of clauses is called saturated up to redundancy if every inference
with premises in N is redundant w.r.t. N .

4.3.1. First-Order Level. In this subsection, let ≻ be an admissible term order for FInf
(Definition 4.6), and let fsel be a selection function on CF.

Definition 4.11 (Inference Redundancy). Given ι ∈ FInf and N ⊆ CF, let ι ∈ FRed I(N) if
ι is a Diff inference and N |=oλ concl(ι) or if ι is not a Diff inference and {E ∈ N | E ≺
mprem(ι)} |=oλ concl(ι).

4.3.2. Indexed Ground Higher-Order Level. In this subsubsection, let ≻ be an admissible
term order for IGInf (Definition 4.8), and let igsel be a selection function on CIG.

To lift the notion of inference redundancy, we need to connect the inference systems
FInf and IGInf as follows.

Lemma 4.12. Since ≻ is an admissible term order for IGInf (Definition 4.8), the relation
≻F defined in Definition 2.21 is an admissible term order for FInf (Definition 4.6).

Proof. This is easy to see, considering that F is a bijection between Tground(ΣI) and TF

(Lemma 2.20), that every first-order subterm corresponds to a higher-order yellow subterm
by Lemma 4.3, and that F maps each side of each literal individually.

Definition 4.13. We extend F to inference rules by mapping an inference ι ∈ IGInf to the
inference

F (prems(ι))

F (concl(ι))

Lemma 4.14. The mapping F is a bijection between IGInf ≻,igsel and FInf ≻F ,F (igsel), where
F (igsel) is defined in Definition 2.23.

Proof. This is easy to see by comparing the rules of IGInf and FInf and considering
Remark 4.7. It is crucial that the following concepts match:

– Subterms on the F level correspond to green subterms on the IG level by Lemma 4.3.
– The term orders correspond (Definition 2.21).

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 31

– The selected literals correspond; i.e., a literal L is selected in a clause C if and only if
the literal F (L) is selected in F (C). This follows directly from the definition of F (igsel)
(Definition 2.23).

– The concepts of eligibility correspond; i.e., a literal L of a clause C ∈ CIG is (strictly)
eligible w.r.t. ⪰ if and only if the literal F (L) of the clause C is (strictly) eligible w.r.t.
⪰F ; and a position L.s.p of a clause C ∈ CIG is eligible w.r.t. ⪰ if and only if the
position F (L).F (s).p of the clause F (C) is eligible w.r.t. ⪰F . This is true because
eligibility (Definition 2.15) depends only on the selected literals and the term order, which
correspond as discussed above.

Definition 4.15 (Inference Redundancy). Given ι ∈ IGInf ≻,igsel and N ⊆ CIG, let ι ∈
IGRed I(N) if F (ι) ∈ FRed I(F (N)) (Definition 4.11) w.r.t. ≻F .

Using the bijection between IGInf and FInf , we can show that saturation w.r.t. IGInf
implies saturation w.r.t. FInf :

Lemma 4.16. Let N be saturated up to redundancy w.r.t. IGInf ≻,igsel . Then F (N) is

saturated up to redundancy w.r.t. FInf ≻F ,F (igsel).

Proof. By Lemma 4.14 and Definition 4.15.

4.3.3. Ground Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
for GInf (Definition 4.9), and let gsel be a selection function on CG.

Since mapping J is clearly bijective, we can transfer ≻ from the G level to the IG level
as follows:

Definition 4.17. Let ≻ be a relation on Tground(ΣH) and on clauses over Tground(ΣH). We
define a relation ≻J on Tground(ΣI) and on clauses over Tground(ΣI) as d ≻J e if and only if
J−1(d) ≻ J−1(e) for all terms or clauses d and e.

Lemma 4.18. Since ≻ is an admissible term order for GInf (Definition 4.9), the relation
≻J is an admissible term order for IGInf (Definition 4.8).

Proof. This is easy to see, considering that J is a bijection and that J and J−1 preserve
yellow subterms.

Since J is bijective, we can transfer the selection function as follows:

Definition 4.19. Based on gsel , we define J (gsel) as a selection function that selects the
literals of C ∈ CIG corresponding to the gsel -selected literals in J−1(C).

Definition 4.20. We extend J to inference rules by mapping an inference ι ∈ GInf to the
inference

J (prems(ι))

J (concl(ι))

Lemma 4.21. The mapping J is a bijection between GInf ≻,gsel and IGInf ≻J ,J (gsel).

Proof. This is easy to see by comparing the rules of GInf and IGInf . It is crucial that the
following concepts match:

– Green subterms on the IG level correspond to green subterms on the G level.
– The term orders correspond (Definition 4.17).

32 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

– The selected literals correspond; i.e., a literal L is selected in a clause C if and only if
the literal J (L) is selected in J (C). This follows directly from the definition of J (gsel)
(Definition 4.19).

– The concepts of eligibility correspond; i.e., a literal L of a clause C ∈ CG is (strictly) eligible
w.r.t. ⪰ if and only if the literal J (L) of the clause C is (strictly) eligible w.r.t. ⪰J ; and a
position L.s.p of a clause C ∈ CG is eligible w.r.t. ⪰ if and only if the position J (L).J (s).p
of the clause J (C) is eligible w.r.t. ⪰J . This is true because eligibility (Definition 2.15)
depends only on the selected literals and the term order, which correspond as discussed
above.

Definition 4.22 (Inference Redundancy). Let N ⊆ CG and ι ∈ GInf . We define ι ∈ GRed I

if J (ι) ∈ IGRed I(J (N)).

Lemma 4.23. Let N ⊆ CG be saturated up to redundancy w.r.t. GInf ≻,gsel . Then J (N) is

saturated up to redundancy w.r.t. IGInf ≻J ,J (gsel).

Proof. By Lemma 4.21 and Defintion 4.22.

4.3.4. Full Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
(Definition 2.12) and let hsel be a selection function (Definition 2.14).

Lemma 4.24. The relation ≻ is an admissible term order for GInf .

Proof. Conditions (O1) to (O6) are identical to conditions (O1)G to (O6)G.

The selection function is transferred as follows:

Definition 4.25. Let N ⊆ CH. We choose a function G−1
N , depending on this set N , such

that G−1
N (C) ∈ N and G(G−1

N (C)) = C for all C ∈ G(N). Then we define G(hsel , N) as a
selection function that selects the literals of C ∈ G(N) corresponding to the hsel -selected
literals in G−1

N (C) and that selects arbitrary literals in all other clauses.

Lemma 4.26 (Lifting of Order Conditions). Let t, s ∈ T (ΣH), and let ζ be a grounding
substitution. If tζ ≻ sζ, then t ̸⪯ s. The same holds for literals.

Proof. We prove the contrapositive. If t ⪯ s, then, by (O7), tζ ⪯ sζ. Therefore, since ≻ is
asymmetric by (O1), tζ ̸≻ sζ. The proof for literals is analogous, using (O6) and (O8).

Lemma 4.27 (Lifting of Maximality Conditions). Let C ∈ CH. Let θ be a grounding
substitution. Let L0 be (strictly) maximal in Cθ. Then there exists a literal L that is
(strictly) maximal in C such that Lθ = L0.

Proof. By Definition 2.13, a literal L of a clause C is maximal if for all K ∈ C such that
K ⪰ L, we have K ⪯ L.

Since L0 ∈ Cθ, there exist literals L in C such that Lθ = L0. Let L be a maximal one
among these literals. A maximal one must exist because ≻ is transitive on literals by (O9)
and transitivity implies existence of maximal elements in nonempty finite sets. Let K be a
literal in C such that K ⪰ L. We must show that K ⪯ L. By Lemma 4.26, Kθ ̸≺ Lθ = L0.
By (O1), ≻ is a total order on ground terms, and thus Kθ ⪰ L0. By maximality of L0 in
Cθ, we have Kθ ⪯ L0 and thus Kθ = L0 by (O1). Then K ⪯ L because we chose L to be
maximal among all literals in C such that Lθ = L0.

For strict maximality, we simply observe that if L occurs more than once in C, it also
occurs more than once in Cθ.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 33

Lemma 4.28 (Lifting of Eligibility). Let N ⊆ CH. Let CG ∈ G(N), let CH = G−1
N (CG),

and let θ be a grounding substitution such that CG = CHθ.

– Let LG be a literal in CG that is (strictly) eligible w.r.t. G(hsel , N). Then there exists a
literal LH in CH such that LG = LHθ and, given substitutions σ and ζ with xθ = xσζ for
all variables x in CH, LH is (strictly) eligible in CH w.r.t. σ and hsel .

– Let LG.sG.pG be a green position of CG that is eligible w.r.t. G(hsel , N). Then there exists
a green position LH.sH.pH of CH such that
– LG = LHθ;
– sG = sHθ;
– ∗ pG = pH, or

∗ pG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH is
variable-headed, and uHθ is nonfunctional; and

– given substitutions σ and ζ with xθ = xσζ for all variables x in CH, LH.sH.pH is eligible
in CH w.r.t. σ and hsel .

Proof. Let LG be a literal in CG that is (strictly) eligible w.r.t. G(hsel , N). By the definition
of eligibility (Definition 2.15), there are two ways to be (strictly) eligible:

– LG is selected by G(hsel , N). By Definition 4.25, there exists a literal LH selected by hsel
such that LG = LHθ. By Definition 2.15, LH is (strictly) eligible in CH w.r.t. σ because it
is selected.

– There are no selected literals in CG and LG is (strictly) maximal in CG. By Definition 4.25,
there are no selected literals in CH. Since CG = CHθ = CHσζ, by Lemma 4.27, there
exists a literal LH ∈ CH such that LHσ is (strictly) maximal in CHσ. By Definition 2.15,
LH is (strictly) eligible in CH[[S]] w.r.t. σ.

For the second part of the lemma, let LG.sG.pG be a green position of CG that is eligible
w.r.t. G(hsel , N). By Definition 2.15, the literal LG is of the form sG ≈̇ tG with sG ≻ tG
and LG is either negative and eligible or positive and strictly eligible. By the first part of
this lemma, there exists a literal LH in CH that is either negative and eligible or positive and
strictly eligible in CH w.r.t. σ and hsel such that LG = LHθ. Then LH must be of the form
sH ≈̇ tH with sG = sHθ and tG = tHθ. Since sG ≻ tG, we have sH ̸⪯ tH. By Definition 2.15,
every green position in LH.sH is eligible in CH w.r.t. σ and hsel .

It remains to show that there exists a green position LH.sH.pH in CH such that either
pG = pH or pG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH is
variable-headed, and uHθ is nonfunctional.

Since pG is a green position of sG = sHθ, position pG must either be a green position
of sH or be below a variable-headed term in sH. In the first case, we set pH = pG. In the
second case, let uH be that variable-headed term and let pH be its position. Then pH.q = pG
for some nonempty q. Moreover, since pG is a green position of sG, the subterm of sG at
position pH, which is uHθ, cannot be functional.

Lemma 4.29 (Lifting Lemma). Let N ⊆ CH be saturated up to redundancy w.r.t. HInf ≻,hsel .

Then G(N) is saturated up to redundancy w.r.t. GInf ≻,G(hsel ,N).

34 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Proof. Let ιG be a GInf inference from G(N). We must show that ιG ∈ GRed I(G(N)). By
Definitions 4.22, 4.15, 4.11, and Lemma 4.5, it suffices to show that

F (G(N)) |=oλ F (concl(ιG)) if ιG is a Diff inference, or

{E ∈ F (G(N)) | E ≺F F (mprem(ιG))} |=oλ F (concl(ιG)) if ιG is some other inference.
(*)

One strategy that we will apply below is to construct an inference ιH such that the prefixes of
ιH and ιG match up to the prefixes G and Fluid and to construct substitutions θ1, . . . , θm+1

such that applying θ1, . . . , θm to prems(ιH) yields prems(ιG) and applying θm+1 to concl(ιH)
yields concl(ιG). (∗∗)

By Lemmas 4.21 and 4.14, F (J (ιG)) is a valid FInf ≻JF ,F (J (G(hsel ,N))) inference, By
Lemma 4.5, ≻JF =≻F and F (J (G(hsel , N))) = F (G(hsel , N)). Moreover, Lemma 4.5 tells
us that F (J (ιG)) can also be obtained by applying F directly to premisses and conclusion
of ιG. Therefore, ιH is rooted in FInf for (θ1, . . . , θm+1) (Definition 2.24). By saturation of
N up to redundancy w.r.t. HInf , ιH is redundant and thus (∗) by Definition 2.25.

GSup: Assume that ιG is a GSup inference
DG︷ ︸︸ ︷

D′
G ∨ tG ≈ t′G CG tG

IGSup
D′

G ∨ CG t′G

Let CH = G−1
N (CG), and let θ be a grounding substitution such that CG = CHθ. By

condition 4 of GSup, the position LG.sG.pG of tG is eligible in CG. By Lemma 4.28, there
exists a green position LH.sH.pH of CH such that

– LG = LHθ;
– sG = sHθ;
– given substitutions σ and ζ with xθ = xσζ for all variables x in CH, LH.sH.pH is eligible

in CH w.r.t. σ and hsel (condition 5 of Sup or FluidSup);

and one of the following cases applies:

Case 1: pG = pH.

Case 1a: The subterm at position LH.sH.pH of CH is a variable x and no occurrence of x
is inside of a parameter in CH.

Since free De Bruijn indices cannot occur in parameters, x does not occur in parameters
in CHθ[x 7→ x] either. By condition 1 of GSup, tG is nonfunctional and so x is nonfunctional.
Thus, all occurrences of x in CHθ[x 7→ x] are in green positions. Thus, CHθ[x 7→ t′G] results
from CHθ = CG by replacing tG with t′G at green positions. Thus, by the TG-analogue of
Lemma 4.3, F (CG) results from F (CHθ[x 7→ t′G]) by replacing F (tG) with F (t′G). Therefore,
{F (tG) ≈ F (t′G),F (CHθ[x 7→ t′G])} |=oλ F (CG) and thus

{F (DG),F (CHθ[x 7→ t′G])} |=oλ F (D′
G ∨ CG t′G)

By condition 3 of GSup, DG ≺ mprem(ιG), and thus F (DG) ≺F F (mprem(ιG)). By
Condition 2 of GSup, tG ≻ t′G, and thus by (O2)F, F (mprem(ιG)) = F (CHθ[x 7→ tG]) ≻F
F (CHθ[x 7→ t′G]). Therefore,

{E ∈ F (G(N)) | E ≺F F (mprem(ιG))} |=oλ F (concl(ιG))

and thus (∗).

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 35

Case 1b: The subterm uH at position LH.sH.pH of CH is not a variable or there exists an
occurrence of that variable inside of a parameter in CH.

Then we construct a Sup inference ιH from DH = G−1
N (DG), and CH = G−1

N (CG). Let ρ
be the grounding substitution such that DG = DHρ and let θ be the grounding substitution
such that CG = CHθ.

The assumption of this cases matches exactly condition 2 of Sup.
Condition 5 of GSup states that tG ≈ t′G is strictly eligible in DG. Let DH = D′

H ∨
tH ≈ t′H, where tH ≈ t′H is the literal that Lemma 4.28 guarantees to be strictly eligible w.r.t.
any suitable σ (condition 6 of Sup), with tHρ = tG and t′Hρ = t′G. Condition 6 of GSup
states that if t′G is Boolean, then t′G = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Thus, there are no selected literals in DG. By
Definition 4.25, it follows that there are no selected literals in DH (condition 7 of Sup).

Since LG = LHθ, sG = sHθ, and pG = pH, we have uHθ = tG = tHρ. Since the variables
of DH and CH are disjoint, there exists a subsitution θ ∪ ρ that matches θ on all variables of
CH and ρ on all variables of DH. This substitution is a unifier of tH ≡ uH. By Definition 2.11,
there exists a unifier σ ∈ CSU(tH ≡ uH) and a substitution ζ such that xσζ = x(θ ∪ ρ) for
all variables x in CH or DH (condition 1 of Sup).

Since tG is nonfunctional by condition 1 of GSup, and since uHσζ = uHθ = tG, uHσ is
nonfunctional (condition 3 of Sup).

By condition 2 of GSup, tHσζ = tG ≻ t′G = t′Hσζ, and thus by Lemma 4.26, tHσ ̸⪯ t′Hσ
(condition 4 of Sup).

Moreover, concl(ιH)ζ = concl(ιG). Thus, we can apply (∗∗).

Case 2: pG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH is
variable-headed, and uHθ is nonfunctional.

Case 2a: The subterm at position LH.sH.pH of CH is a variable and no occurrence of that
variable is inside of a parameter in CH.

Then we can proceed as in Case 1a.

Case 2b: The subterm uH at position LH.sH.pH of CH is not a variable or there exists an
occurrence of that variable inside of a parameter in CH.

Then we construct a FluidSup inference ιH from DH = G−1
N (DG), and CH = G−1

N (CG).
Let ρ be the grounding substitution such that DG = DHρ and let θ be the grounding
substitution such that CG = CHθ.

The assumptions of this case imply condition 2 of FluidSup. We define D′
H, tH, and

t′H in the same way as in Case 1b. This ensures condition 6 and condition 7 of FluidSup.
Let z be a fresh variable (condition 8 of FluidSup). Let v = λ (uHθ) n q, where n is

the appropriate De Bruijn index to refer to the initial λ. We define θ′ by zθ′ = v, xθ′ = xρ
for all variables x in DH and xθ′ = xθ for all other variables x. Then, (z tH)θ

′ = v (tHρ) =
v tG = (uHθ) tG q = uHθ = uHθ

′. So θ′ is a unifier of z tH and uH. Thus, by definition of
CSU (Definition 2.11), there exists a unifier σ ∈ CSU(z tH ≡ uH) and a substitution ζ such
that xσζ = xθ′H for all relevant variables x (condition 1 of FluidSup).

The assumption of Case 2 tells us that uHθ = uHσζ is nonfunctional. It follows that
uHσ is nonfunctional (condition 3 of FluidSup).

By condition 2 of GSup, tHσζ = tG ≻ t′G = t′Hσζ, and thus by Lemma 4.26, tHσ ̸⪯ t′Hσ
(condition 4 of FluidSup).

By condition 2 of GSup, tHρ = tG ̸= t′G = t′Hρ. Thus, (ztH)σζ = v(tHρ) = uHθ tHρ q ̸=
uHθ t′Hρ q = v (t′Hρ) = (z t′H)σζ. So, (z t

′
H)σ ̸= (z tH)σ (condition 9 of FluidSup).

36 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Since zσζ = v and v ̸= λ 0 because q is nonempty, we have zσ ̸= λ 0 (condition 10 of
FluidSup).

Moreover, concl(ιH)ζ = (D′
H ∨ CH z t′H pH)σζ = D′

G ∨ CG (uHθ) t′G q pH = D′
G ∨

CG t′G pG = concl(ιG). Thus, we can apply (∗∗).
GEqRes: Assume that ιG is a GEqRes inference

CG︷ ︸︸ ︷
C ′
G ∨ uG ̸≈ uG

GEqRes
C ′
G

Let CH = G−1
N (CG), and let θ be a grounding substitution such that CG = CHθ. Condition 1

of GEqRes states that uG ̸≈ uG is strictly eligible in CG. Let CH = C ′
H ∨ uH ̸≈ u′H, where

uH ̸≈ u′H is the literal that Lemma 4.28 guarantees to be strictly eligible w.r.t. any suitable σ
(condition 2 of GEqRes), with uHθ = uG and u′Hθ = uG. Then θ is a unifier of uH and u′H,
and thus there exists a unifier σ ∈ CSU(uH ≡ u′H) and a substitution ζ such that xσζ = xθ
for all variables x in CH (condition 1 of GEqRes).

Moreover, concl(ιH)ζ = concl(ιG). Thus, we can apply (∗∗).
GEqFact: Assume that ιG is a GEqFact inference

CG︷ ︸︸ ︷
C ′
G ∨ uG ≈ v′G ∨ uG ≈ vG

GEqFact
C ′
G ∨ vG ̸≈ v′G ∨ uG ≈ vG

Let CH = G−1
N (CG), and let θ be a grounding substitution such that CG = CHθ. Condition 1

of GEqFact states that uG ≈ vG is maximal in CG. Let uH ≈ vH be the literal in CH

that Lemma 4.27 guarantees to be strictly maximal w.r.t. any suitable σ (condition 2 of
EqFact), with uHθ = uG and vHθ = vG. Choose C ′

H, u
′
H, and v′H such that CH = C ′

H ∨
u′H ≈ v′H ∨ uH ≈ vH, C

′
Hθ = C ′

G, u
′
Hθ = uG, and v′Hθ = v′G.

Then θ is a unifier of uH and u′H, and thus there exists a unifier σ ∈ CSU(uH ≡ u′H) and
a substitution ζ such that xσζ = xθ for all variables x in CH (condition 1 of EqFact).

By condition 2 of GEqFact, there are no selected literals in CG and thus there are no
selected literals in CH (condition 3 of EqFact).

By condition 3 of GEqFact, uHσζ = uG ≻ vG = vHσζ. By Lemma 4.26, uHσ ̸⪯ vHσ
(condition 4 of EqFact).

Moreover, concl(ιH)ζ = concl(ιG). Thus, we can apply (∗∗).
GClausify: Assume ιG is a GClausify inference

CG︷ ︸︸ ︷
C ′
G ∨ sG ≈ tG

GClausify
C ′
G ∨ DG

with τG being the type and uG and vG being the terms used for condition 2. Let CH =
G−1
N (CG), and let θ be a grounding substitution such that CG = CHθ.

Condition 1 of GClausify is that sG ≈ tG is strictly eligible in CG. Let CH = C ′
H ∨

sH ≈ tH, where sH ≈ tH is the literal that Lemma 4.28 guarantees to be strictly eligible
w.r.t. any suitable σ (condition 2 of Clausify), with sHθ = sG and tHθ = tG.

We distinguish two cases:
Case 1: sH is a variable and no occurrence of that variable is inside of a parameter in CH.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 37

Then we define substitutions θ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and θ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ that coincide with θ, except for mapping
sH to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, respectively. Since the semantics of |=oλ interpret Booleans, we have
{F (CHθ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤),F (CHθ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)} |=oλ F (CHθ) because sH does not appear in parameters in CH. By
(O4)F and (O2)F, F (CHθ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) ≺ F (CHθ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) ≺ F (CHθ). Therefore, we can apply (∗).

Case 2: sH is not a variable or there exists an occurrence of that variable inside of a
parameter in CH (condition 3 of Clausify). Then we construct a corresponding Clausify
inference ιH.

Comparing the listed triples in GClausify and Clausify, we see that there must
be a triple (s′H, t

′
H, DH) listed for Clausify such that (s′Hρ, t

′
Hρ,DHρ) = (sG, tG, DG) with

ρ = {α 7→ τG, x 7→ uG, y 7→ vG} is the triple used for ιG (condition 4 of Clausify).
Moreover, we observe that sHθ = sG = s′Hρ and tHθ = tG = t′Hρ. Thus the substitution

θ′ mapping all variables x in s′H and t′H to xρ and all other variables x to xθ is a unifier of
sH ≡ s′H and tH ≡ t′H. So there exists a unifier σ ∈ CSU(sH ≡ s′H, tH ≡ t′H) (condition 1 of
Clausify) and a substitution ζ such that xσζ = xθ′ for all variables x in CH.

Moreover, it follows that concl(ιH)ζ = concl(ιG). Thus, we can apply (∗∗).

GBoolHoist: Analogous to GSup, using the substitutions θ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and θ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ as in Case 1 of
GClausify.

GLoobHoist: Analogous to GBoolHoist.

GFalseElim: Analogous to GEqRes.

GArgCong: Analogous to GEqRes.

GExt: Assume that ιG is a GExt inference

CG uG
IGExt

CG wG ∨ uG diff⟨τG, υG⟩(uG, wG) ̸≈ wG diff⟨τG, υG⟩(uG, wG)

Let CH = G−1
N (CG), and let θ be a grounding substitution such that CG = CHθ. By

condition 1 of GExt, the position LG.sG.pG of uG is eligible in CG. By Lemma 4.28, there
exists a green position LH.sH.pH of CH such that

– LG = LHθ;
– sG = sHθ;
– given substitutions σ and ζ with xθ = xσζ for all variables x in CH, LH.sH.pH is eligible

in CH w.r.t. σ and hsel (condition 3 of Ext/condition 7 of FluidExt);

and one of the following cases applies:

Case 1: pG = pH. Then we construct an Ext inference ιH from CH.
Let uH be the subterm of CH at position LH.sH.pH. Since pG = pH, we have uHθ = uG.

By condition 2 of GExt, uG is functional and thus there exists a most general type
substitution σ such that uHσ is functional (condition 1 of Ext). By definition of ‘most
general’, there exists a substitution ζ such that xσζ = xθ for all variables x in CH.

Let y be a fresh variable of the same type as uHσ (condition 2 of Ext). Let ζ ′ = ζ[y 7→
wG]. Then, concl(ιH)ζ

′ = concl(ιG). Thus, we can apply (∗∗).

Case 2: pG = pH.q for some nonempty q, the subterm uH at position LH.sH.pH of CH is
variable-headed, and uHθ is nonfunctional.

Then we construct a FluidSup inference ιH from CH = G−1
N (CG).

The assumption of this case implies condition 1 of FluidExt.

38 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Let α and β be fresh type variables. Let x and y be fresh variables of type α → β,
and let z be a fresh variable of function type from α → β to the type of uH (condition 3 of
FluidExt).

Let v = λ (uHθ) n q, where n is the appropriate De Bruijn index to refer to the initial λ.
We define a substitutionθ′ that coincides with θ on all variables except αθ′ = τG, βθ

′ = υG,
zθ′ = v, xθ′ = uG, and yθ′ = wG. Then, (z x)θ

′ = v uG = (uHθ) uG q = uHθ = uHθ
′. So θ′

is a unifier of z x and uH. Thus, by definition of CSU (Definition 2.11), there exists a unifier
σ ∈ CSU(z x ≡ uH) and a substitution ζ such that xσζ = xθ′ for all relevant variables x
(condition 4 of FluidExt).

The assumption of Case 2 tells us that uHθ = uHσζ is nonfunctional. It follows that
uHσ is nonfunctional (condition 2 of FluidExt).

By condition 4 of GExt, uG ̸= wG. Thus, (z x)σζ = v uG = (uHθ) uG q ̸=
(uHθ) wG q = v wG = (z y)σζ. So, (z x)σ ̸= (z y)σ (condition 5 of FluidExt).

Since zσζ = v and v ̸= λ 0 because q is nonempty, we have zσ ̸= λ 0 (condition 6 of
FluidExt).

Moreover,

concl(ιH)ζ = (CH z y ∨ x diff⟨α, β⟩(x, y) ̸≈ y diff⟨α, β⟩(x, y))σζ
= CG (uHθ) wG q pH ∨ uG diff⟨τG, υG⟩(uG, wG) ̸≈ wG diff⟨τG, υG⟩(uG, wG)

= CG wG pG ∨ uG diff⟨τG, υG⟩(uG, wG) ̸≈ wG diff⟨τG, υG⟩(uG, wG)

= concl(ιG)

Thus, we can apply (∗∗).

GDiff: Assume that ιG is a GDiff inference

GDiff
u diff⟨τ, υ⟩(u,w) ̸≈ u diff⟨τ, υ⟩(u,w) ∨ u s ≈ w s

Then we use the following Diff inference ιH:

Diff
y (diff⟨α, β⟩(y, z)) ̸≈ z (diff⟨α, β⟩(y, z)) ∨ y x ≈ z x

Clearly, concl(ιH)θ = concl(ιG) for θ = {α 7→ τ, β 7→ υ, y 7→ u, z 7→ w, x 7→ s}. Thus, we
can apply (∗∗).

4.4. Model Construction. In this subsection, we construct models of saturated clause
sets, starting with a first-order model and lifting it through the levels. Using the results of
Section 4.3, we prove a completeness property for each of the calculi that roughly states the
following. For any saturated set N∞ that does not contain the empty clause, there exists a
model of N∞.

Finally, in level H, we bring everything together by showing that the constructed model
is also a model of N0. It follows that the calculus HInf is refutationally complete.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 39

4.4.1. First-Order Levels. In this subsubsection, let ≻ be an admissible term order for FInf
(Definition 4.6), and let fsel be a selection function on CF.

The completeness proof for FInf relies on constructing a first-order term rewrite system.
For any first-order term rewrite system R, there exists a first-order interpretation, which
we also denote R, such that R |=fol s ≈ t if and only if s ↔∗

R t. Formally, this can be
implemented by a first-order interpretation whose universe for each type τ consists of the
R-equivalence classes of ground terms of type τ .

Definition 4.30 (RN). Let N be a set of ground first-order clauses with ⊥ ̸∈ N . By
well-founded induction, we define term rewrite systems Re and ∆e for all ground clauses and
ground terms e ∈ TF ∪ CF and finally a term rewrite system RN . As our well-founded order
on TF ∪ CF, we employ our term and clause order ≻. To compare terms with clauses, we
define a term s to be larger than a clause C if and only if s is larger than every term in C.
Formally, this can be defined using the clause order by Bachmair and Ganzinger [1, Sect. 2.4]
and encoding a term s as the multiset {{{s}}}.
(∆1) Logical Boolean rewrites: Given a term s, let ∆s = {s → t} if

– (s, t) is one of the following:

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ u,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤)

(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ v,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) with u ̸= v

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ̸≈τ u,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥)

(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) (⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ →→→→→→→→→→→→→→→→→→→→→→→→→ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) (u ̸≈τ v,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) with u ̸= v

– s is irreducible w.r.t. Rs.
(∆2) Backstop Boolean rewrites: Given a clause C, let ∆C = {s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥} if

– C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥;
– s /∈ {⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥,⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤};
– s is irreducible w.r.t. RC .

(∆3) Function rewrites: Given a clause C, let ∆C = {F (u) → F (w)} if
– C = F (u) ≈ F (w) for functional terms u and w;
– F (u) ≻ F (w)
– F (u diffτ,υ

s,t) ↔∗
RC

F (v diffτ,υ
s,t) for all s, t;

– F (u) is irreducible w.r.t. RC .
(∆4) Produced rewrites: Given a clause C, let ∆C = {s → t} if

(CC1) C = C ′ ∨ s ≈ t for some clause C ′ and terms s and t;
(CC2) s is nonfunctional;
(CC3) the root of s is not a logical symbol;
(CC4) if t is Boolean, then t = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤
(CC5) s ≻ t;
(CC6) s ≈ t is maximal in C;
(CC7) there are no selected literals in C;
(CC8) s is irreducible by RC ;
(CC9) RC ̸|=fol C;
(CC10) RC ∪ {s → t} ̸|=fol C

′.
In this case, we say that C produces s → t and that C is productive.

(∆5) For all other terms and clauses e, Let ∆e = ∅.
Let Re =

⋃
f≺e∆f . Let RN =

⋃
e∈TF∪CF

∆e.

40 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Lemma 4.31. The rewrite systems RC and RN do not have critical pairs and are oriented
by ≻.

Proof. It is easy to check that all rules in RC and RN are oriented by ≻, using (O4)F.
To show the absence of critical pairs, suppose that there exists a critical pair s → t and

s′ → t′ in RN , originating from ∆e and ∆e′ respectively, for some e, e′ ∈ TF ∪ CF. Without
loss, we assume e ≻ e′. Inspecting the rules of Definition 4.30, it follows that s ⪰ s′. By the
subterm property (O3)F, s cannot be a proper subterm of s′. So for the rules to be a critical
pair, s′ must be a subterm of s. But then s is not irreducible by ∆e′ ⊆ Re, contradicting
the irreducibility conditions of Definition 4.30.

Lemma 4.32. The normal form of any ground Boolean term w.r.t. RN is ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Proof. Inspecting the rules of Definition 4.30, in particular (CC3), we see that ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ are
irreducible w.r.t. RN .

It remains to show that any ground Boolean term s reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. We prove the
claim by induction on s w.r.t. ≻. If s = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or s = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, we are done. Otherwise, consider the
rule (∆2) for C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Either s is reducible by RC or (∆2) triggers, making s reducible
by ∆C . In both cases, s is reducible by RN . Let s′ be the result of reducing s by RN . By
Lemma 4.31, s ≻ s′. By the induction hypothesis, s′ reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Therefore, s reduces
to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.

Lemma 4.33. For all ground clauses C, if RC |=fol C, then RN |=fol C.

Proof. We assume that RC |=fol C. Then we have RC |=fol L for some literal L of C. It
suffices to show that RN |=fol L.

If L = t ≈ t′ is a positive literal, then t ↔∗
RC

t′. Since RC ⊆ RN , this implies t ↔∗
RN

t′.

Thus, RN |=fol L.
If L = t ̸≈ t′ is a negative literal, then t ̸↔∗

RC
t′. By Lemma 4.31, this means that t and

t′ have different normal forms w.r.t. RC . Without loss of generality, let t ≻ t′. Let s ≈̇ s′ be
the maximal literal in C with s ⪰ s′. We have s ≻ t if s ≈̇ s′ is positive and s ⪰ t if s ≈̇ s′

is negative. Hence, inspecting Definition 4.30, we see that the left-hand sides of rules in⋃
e⪰C ∆e are larger than t. Since only rules with a left-hand side smaller or equal to t can

be involved in normalizing t and t′ and RC ∪
⋃

e⪰C ∆e = RN , it follows that t and t′ have

different normal forms w.r.t. RN . Therefore, t ̸↔∗
RN

t′ and RN |=fol L.

Lemma 4.34. If a clause C = C ′ ∨ s ≈ t ∈ CF produces s → t, then RN ̸|=fol C
′.

Proof. By (CC5) and (CC6), all terms in C are smaller or equal to s. By (CC10), we have
RC ∪ {s → t} ̸|= C ′. The other rules RN \ (RC ∪ {s → t}) do not play any role in the truth
of C because their left-hand sides are greater than s, as we can see by inspecting the rules
of Definition 4.30, in particular the irreducibility conditions, and because RN is confluent
and terminating (Lemma 4.31). So, RC ∪ {s → t} ̸|=fol C

′ implies RN ̸|=fol C
′.

Lemma 4.35. Let u and w be higher-order ground terms of type τ → υ. If F (u) ↔∗
RN

F (w),

then F (u diffτ,υ
s,t) ↔∗

RN
F (w diffτ,υ

s,t) for all s, t.

Proof. By induction over each rewrite step in F (u) ↔∗
RN

F (w), it suffices to show the

following claim: If F (u) →RN
F (w), then F (u diffτ,υ

s,t) ↔∗
RN

F (w diffτ,υ
s,t) for all s, t. Here, it

is crucial that s and t are not necessarily equal to u and w.
By definition of F , since u is functional, F (u) = funu. So F (u) has no proper subterms,

and thus the rewrite step must happen at the root of F (u). Inspecting the definition of RN ,

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 41

we observe that the rewrite rule must originate from (∆3). One of the conditions of (∆3)
then yields the claim.

Lemma 4.36. Let u and w be higher-order ground terms of type τ → υ. If F (udiffτ,υ
s,t) ↔∗

RN

F (w diffτ,υ
s,t) for all s, t, then F (u) ↔∗

RN
F (w).

Proof. Let F (u′) = F (u) ↓RN
and F (w′) = F (w) ↓RN

. By applying Lemma 4.35 to
F (u) ↔∗

RN
F (u′) and to F (w′) ↔∗

RN
F (w), we have F (u′ diffτ,υ

s,t) ↔∗
RN

F (w′ diffτ,υ
s,t) for all

s, t.
We want to show that F (u) ↔∗

RN
F (w)—i.e., that F (u′) = F (w′). To derive a

contradiction, we assume that F (u′) ̸= F (w′). Without loss of generality, we may assume
that F (u′) ≻ F (w′). Then, using (O5)F, all conditions of (∆3) are satisfied for the rule
F (u′) → F (w′), contradicting the fact that F (u′) is a normal form.

Lemma 4.37. RN is a |=oλ-interpretation.

Proof. We must prove all conditions listed in Section 2.6.

– By Lemma 4.32, the Boolean type has exactly two elements, namely the interpretations
of ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ and ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. The rule (∆1) ensures that the symbols ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬, ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧, ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨, →→→→→→→→→→→→→→→→→→→→→→→→→, ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈τ , ̸≈τ are interpreted
as the corresponding logical operations. Note that Rs never contains any rules rewriting s
because s is smaller than any clause containing s. So s can be reducible w.r.t. Rs only
when one of its proper subterms is reducible. Since every term has a normal form, adding
rules only for the irreducible terms is sufficient.

– By Lemma 4.5, we have F (J (u) diffτ,υ
s,t) = F (u diff⟨τ, υ⟩(s, t)) for all u, s, t ∈ Tground(ΣH).

Since J is a bijection on ground terms, Lemma 4.36 proves the extensionality condition in
Section 2.6.

– The argument congruence condition in Section 2.6 follows from Lemma 4.35 in the same
way.

We employ a variant of Bachmair and Ganzinger’s framework of reducing counter-
examples [2, Sect. 4.2]. Let N ⊆ CF with ⊥ ̸∈ N . A clause C0 ∈ CF is called a counterexample
if RN ̸|=fol C0. An inference reduces a counterexample C0 if its main premise is C0, its side
premises are in N and true in RN , and its conclusion is a counterexample smaller than C0.
An inference system has the reduction property for counterexamples if for all N ⊆ CF and all
counterexamples C0 ∈ N , there exists an inference from N that reduces C0.

Lemma 4.38. Let C ∈ N be a counterexample. Let L be a literal in C that is eligible and
negative or strictly eligible and positive. We assume that the larger side of L is reducible by
a rule s → s′ ∈ RC . Then the inference system FInf reduces the counterexample C.

Proof. Let p be the position of C that is located at the larger side of L and reducible by
s → s′. We make a case distinction on which case of Definition 4.30 the rule s → s′ originates
from:

– (∆1) Then the root of s is a logical symbol and s /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. By Lemma 4.32, RN reduces
s to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥.
– First consider the case where the position p in C is in a literal of the form s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or

s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then FClausify is applicable to C and the conclusion of this inference is
smaller than it. Moreover, the conclusion is equivalent to C by Lemma 4.37.

– Otherwise, we apply either PFBoolHoist (if s reduces to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) or PFLoobHoist (if
s reduces to ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤). In both cases, the conclusion of the inference is smaller than C.
Moreover, the conclusion is equivalent to C by Lemma 4.37.

42 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

– (∆2) Then RN reduces s to ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and s /∈ {⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. Due to the presence of the rule s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ in
RC , C must be larger than s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. So, since p is eligible in C, this position cannot be in a
literal of the form s ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. It cannot be in a literal of the form s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ either because s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥
is true in RN . So we can apply FBoolHoist to reduce the counterexample, again using
Lemma 4.37.

– (∆3) Then s is functional and reducible w.r.t. RN . Consider the normal form s ↓RN

of s w.r.t. RN . Let u = F −1(s) and w = F −1(s ↓RN
). Then F (u) ↔∗

RN
F (w). By

Lemma 4.35, F (u diffτ,υ
u,w) ↔∗

RN
F (w diffτ,υ

u,w). Since RN is oriented by ≻, we have

F (u) = s ≻ s ↓RN
= F (w). Thus, we can apply FExt to reduce the counterexample,

using Remark 4.7. Given the above properties of RN , the conclusion of this inference
is equivalent to the premise. It is also smaller than the premise by (O5)F and because
F (u) ≻ F (w).

– (∆4) Then some clause D ∨ s ≈ s′ smaller than C produces the rule s → s′. We claim
that the counterexample C is reduced by the inference

D ∨ s ≈ s′ C[s]
FSup

D ∨ C[s′]

This superposition is a valid inference:
– s is nonfunctional by (CC2).
– We have s ≻ s′ by (CC5).
– D ∨ s ≈ s′ ≺ C[s] because D ∨ s ≈ s′ produces a rule in RC .
– The position p of s in C is eligible by assumption of this lemma.
– The literal s ≈ s′ is eligible in D ∨ s ≈ s′ by (CC6) and (CC7). It is strictly eligible

because if s ≈ s′ also occurred as a literal inD, we would have RD∨s≈s′∪{s → s′} |=fol D,
in contradiction to (CC10).

– If s′ is Boolean, then s′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (CC4).
As D ∨ s ≈ s′ is productive, RN ̸|=fol D by Lemma 4.34. Hence D ∨ C [s′] is equivalent
to C [s′], which is equivalent to C [s] w.r.t. RN . It remains to show that the new counter-
example D ∨ C [s′] is strictly smaller than C. Using (O2)F, C[s′] ≺ C because s′ ≺ s and
D ≺ C because D ∨ s ≈ s′ ≺ C. Thus, the inference reduces the counterexample C.

Lemma 4.39. The inference system FInf has the reduction property for counterexamples.

Proof. Let C ∈ N be a counterexample—i.e., a clause that is false in RN . We must show
that there is an inference from N that reduces C; i.e., the inference has main premise C,
side premises in N that are true in RN , and a conclusion that is a smaller counterexample
than C.

Let L be an eligible literal in C. We proceed by a case distinction:

Case 1: L is of the form s ̸≈ s′.

– Case 1.1: s = s′. Then FEqRes reduces C.
– Case 1.2: s ≠ s′. Without loss of generality, s ≻ s′. Since RN ̸|=fol C, we have RC ̸|=fol C

by Lemma 4.33. Therefore, RC ̸|=fol s ̸≈ s′ and RC |=fol s ≈ s′. Thus, s must be reducible
by RC because s ≻ s′. Therefore, we can apply Lemma 4.38.

Case 2: L is of the form s ≈ s′. Since RN ̸|=fol C, we can assume without loss of generality
that s ≻ s′.

– Case 2.1: L is eligible, but not strictly eligible. Then L occurs more than once in C. So
we can apply FEqFact to reduce the counterexample.

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 43

– Case 2.2: L is strictly eligible and s is reducible by RC . Then we apply Lemma 4.38.
– Case 2.3: L is strictly eligible and s = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Then, since s ≻ s′, we have s′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (O4)F.

So, PFFalseElim reduces the counterexample.
– Case 2.4: L is strictly eligible and s is functional. Then we apply FArgCong to reduce the

counterexample. The conclusion is smaller than the premise by (O5)F. By Lemma 4.36,
there must be at least one choice of u and w in the FArgCong rule such that the
conclusion is a counterexample.

– Case 2.5: L is strictly eligible and s ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is nonfunctional and not reducible by RC .
Since RN ̸|=fol C, C cannot be productive. So at least one of the conditions of (∆4) of
Definition 4.30 is violated. (CC1), (CC2), (CC5), (CC8), and (CC9) are clearly satisfied.

For (CC3), (CC4), (CC6), and (CC7), we argue as follows:
– (CC3): If s were headed by a logical symbol, then one of the cases of (∆1) applies.
The condition in (∆1) that any Boolean arguments of s must be ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ or ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ is fulfilled by
Lemma 4.32 and the fact that the rules applicable to subterms of s in RN are already
contained in Rs. So (∆1) adds a rewrite rule for s to RC , contradicting irreducibility
of s.

– (CC4): If s′ were a Boolean other than ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, since s ≻ s′, we would have s ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤,⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ by
(O4)F. Moreover, s′ ⪰ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and thus C ⪰ s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. Since s is not reducible by RC , is is also
irreducible by R

s≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ⊆ RC . So (∆2) triggers and sets ∆
s≈⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ = {s → ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥}. Since s is not

reducible by RC , we must have C = s ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥. But then C istrue in RN , a contradiction.
– (CC6): By (CC4), L cannot be selected and thus eligibility implies maximality.
– (CC7): By (CC4), L cannot be selected. If another literal was selected, L0 would not

be eligible.
So (CC10) must be violated. Then RC ∪ {s → s′} |=fol C

′, where C ′ is the subclause
of C with L removed. However, RC ̸|=fol C, and therefore, RC ̸|=fol C

′. Thus, we must
have C ′ = C ′′ ∨ r ≈ t for some terms r and t, where RC ∪ {s → s′} |=fol r ≈ t and
RC ̸|=fol r ≈ t. So r ̸= t and without loss of generality we assume r ≻ t. Moreover
s → s′ must participate in the normalization of r or t by RC ∪ {s → s′}. Since s ≈ s′ is
maximal in C by (CC6), r ⪯ s. So the rule s → s′ can be used only as the first step in
the normalization of r. Hence r = s and RC |=fol s

′ ≈ t. Then FEqFact reduces the
counterexample.

Using Lemma 4.39 and the same ideas as for Theorem 4.9 of Bachmair and Ganzinger’s
framework [2], we obtain the following theorem:

Theorem 4.40. Let N be a set of closures that is saturated up to redundancy w.r.t. FInf
and FRed I, and ⊥ ̸∈ N . Then RN |=oλ N .

Proof. By Lemma 4.37, it suffices to show that RN |=fol N . For a proof by contradiction, we
assume that RN ̸|=fol N . Then N contains a minimal counterexample, i.e., a clause C with
RN ̸|=fol C. Since FInf has the reduction property for counterexamples by Lemma 4.39,
there exists an inference that reduces C—i.e., an inference ι with main premise C, side
premises in N that are true in RN , and a conclusion concl(ι) that is smaller than C and
false in RN . By saturation up to redundancy, ι ∈ FRed I. By Definition 4.11, we have
{E ∈ N | E ≺ C} |=oλ concl(ι). By minimality of the counterexample C, the clauses
{E ∈ N | E ≺ C} must be true in RN , and it follows that concl(ι) is true in RN , a
contradiction.

44 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

4.4.2. Indexed Ground Higher-Order Level.
In this subsubsection, let ≻ be an admissible term order for IGInf (Definition 4.8),

let igsel be a selection function on CIG, and let N ⊆ CIG such that N is saturated up
to redundancy w.r.t. IGInf and ⊥ ̸∈ N . We write R for the term rewrite system RF (N)

constructed in the previous subsubsection w.r.t. ≻F and F (igsel). We write t ∼ s for
F (t) ↔∗

R F (s), where t, s ∈ Tground(ΣI).
Our goal in this subsubsection is to use R to define a higher-order interpretation that is

a model of N . To obtain a valid higher-order interpretation, we need to show that sθ ∼ sθ′

whenever xθ ∼ xθ′ for all x in s.

Lemma 4.41 (Argument congruence). Let s ∼ s′ for s, s′ ∈ Tground(ΣI). Let u ∈ Tground(ΣI).
Then s u ∼ s′ u.

Proof. Consider the following inference ι:

IGDiff
s diffτ,υ

s,s′ ̸≈ s′ diffτ,υ
s,s′ ∨ s u ≈ s′ u

Since N is saturated, ι is redundant and thus F (N) |= F (concl(ι)). Hence R |= F (concl(ι))
by Theorem 4.40 and Lemma 4.16.

By Lemma 4.35, R |= F (s diffτ,υ
s,s′) ≈ F (s′ diffτ,υ

s,s′). It follows that R |= F (s u ≈ s′ u).

Thus, s u ∼ s′ u.

The following lemma and its proof are essentially identical to Lemma 54 of Bentkamp et
al. [5]. We have adapted the proof to use De Bruijn indices, and we have removed the notion
of term-ground and replaced it by preprocessing term variables, which arguably would have
been more elegant in the original proof as well.

Lemma 4.42. Let s ∈ T (ΣI), and let θ, θ′ be grounding substitutions such that xθ ∼ xθ′

for all variables x and αθ = αθ′ for all type variables α. Then sθ ∼ sθ′.

Proof. In this proof, we work directly on λ-terms. To prove the lemma, it suffices to prove it
for any λ-term s ∈ T λ(ΣI). Here, for t1, t2 ∈ T λ

ground(ΣI), the notation t1 ∼ t2 is to be read
as t1↓β ∼ t2↓β because F is defined only on β-normal λ-terms.

Without loss of generality, we may assume that s contains no type variables. If s does
contain type variables, we can instead use the term s0 resulting from instantiating each
type variable α in s with αθ. If the result holds for the term s0, which does not contain
type variables, then s0θ ∼ s0θ

′, and thus the result also holds for s because sθ = s0θ and
sθ′ = s0θ

′.

Definition We extend the syntax of λ-terms with a new polymorphic function symbol
⊕ : Πα. α → α → α. We will omit its type argument. It is equipped with two reduction
rules: ⊕ t s → t and ⊕ t s → s. A β⊕-reduction step is either a rewrite step following one of
these rules or a β-reduction step.

The computability path order ≻CPO [9] guarantees that

– ⊕ t s ≻CPO s by applying rule @▷;
– ⊕ t s ≻CPO t by applying rule @▷ twice;
– (λ t) s ≻CPO t{0 7→ s} by applying rule @β.

Since this order is moreover monotone, it decreases with β⊕-reduction steps. The order is
also well founded; thus, β⊕-reductions terminate. And since the β⊕-reduction steps describe

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 45

a finitely branching term rewriting system, by Kőnig’s lemma [16], there exists a maximal
number of β⊕-reduction steps from each λ-term.

Definition We introduce an auxiliary function S that essentially measures the size of a
λ-term but assigns a size of 1 to ground λ-terms.

S(s) =


1 if s is ground or if s is a variable

1 + S(t) if s is not ground and has the form λ t

S(t) + S(u) if s is not ground and has the form t u

We prove sθ ∼ sθ′ by well-founded induction on s, θ, and θ′ using the left-to-right
lexicographic order on the triple

(
n1(s), n2(s), n3(s)

)
∈ N4, where

– n1(s) is the maximal number of β⊕-reduction steps starting from sσ, where σ is the
substitution mapping each variable x to ⊕ xθ xθ′;

– n2(s) is the number of variables occurring more than once in s;
– n3(s) = S(s).

Case 1: The λ-term s is ground. Then the lemma is trivial.

Case 2: The λ-term s contains k ≥ 2 variables. Then we can apply the induction hypothesis
twice and use the transitivity of ∼ as follows. Let x be one of the variables in s. Let
ρ = {x 7→ xθ} the substitution that maps x to xθ and ignores all other variables. Let
ρ′ = θ′[x 7→ x].

We want to invoke the induction hypothesis on sρ and sρ′. This is justified because sσ
⊕-reduces to sρσ and to sρ′σ, for σ as given in the definition of n1. These ⊕-reductions have
at least one step because x occurs in s and k ≥ 2. Hence, n1(s) > n1(sρ) and n1(s) > n1(sρ

′).
This application of the induction hypothesis gives us sρθ ∼ sρθ′ and sρ′θ ∼ sρ′θ′. Since

sρθ = sθ and sρ′θ′ = sθ′, this is equivalent to sθ ∼ sρθ′ and sρ′θ ∼ sθ′. Since moreover
sρθ′ = sρ′θ, we have sθ ∼ sθ′ by transitivity of ∼. The following illustration visualizes the
above argument:

sρ sρ′

sθ ∼
IH

sρθ′ = sρ′θ ∼
IH

sθ′
θ θ′ θ θ′

Case 3: The λ-term s contains a variable that occurs more than once. Then we rename
variable occurrences apart by replacing each occurrence of each variable x by a fresh variable
xi, for which we define xiθ = xθ and xiθ

′ = xθ′. Let s′ be the resulting λ-term. Since
sσ = s′σ for σ as given in the definition of n1, we have n1(s) = n1(s

′). All variables
occur only once in s′. Hence, n2(s) > 0 = n2(s

′). Therefore, we can invoke the induction
hypothesis on s′ to obtain s′θ ∼ s′θ′. Since sθ = s′θ and sθ′ = s′θ′, it follows that sθ ∼ sθ′.

Case 4: The λ-term s contains only one variable x, which occurs exactly once.

Case 4.1: The λ-term s is of the form f⟨τ̄⟩ t̄ for some symbol f, some types τ̄ , and some
λ-terms t̄. Then let u be the λ-term in t̄ that contains x. We want to apply the induction
hypothesis to u, which can be justified as follows. For σ as given in the definition of n1,
consider the longest sequence of β⊕-reductions from uσ. This sequence can be replicated
inside sσ = (f⟨τ̄⟩ t̄)σ. Therefore, the longest sequence of β⊕-reductions from sσ is at least
as long—i.e., n1(s) ≥ n1(u). Since both s and u have only one variable occurrence, we have
n2(s) = 0 = n2(u). But n3(s) > n3(u) because u is a nonground subterm of s.

46 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Applying the induction hypothesis gives us uθ ∼ uθ′. By definition of F , we have
F((f⟨τ̄⟩ t̄)θ) = f τ̄m F(t̄θ) and analogously for θ′, where m is the length of t̄. By congruence of
≈ in first-order logic, it follows that sθ ∼ sθ′.

Case 4.2: The λ-term s is of the form x t̄ for some λ-terms t̄. Then we observe that, by
assumption, xθ ∼ xθ′. Since x occurs only once, t̄ are ground. Then xθ t̄ ∼ xθ′ t̄ by applying
Lemma 4.41 repeatedly. Hence sθ = xθ t̄ and sθ = xθ′ t̄, and it follows that sθ ∼ sθ′.

Case 4.3: The λ-term s is of the form λ u for some λ-term u. Then we observe that to
prove sθ ∼ sθ′, by Lemma 4.36, it suffices to show that sθ diffsθ,sθ′ ∼ sθ′ diffsθ,sθ′ . Via
β-conversion, this is equivalent to vθ ∼ vθ′, where v = u{0 7→ diffsθ,sθ′}. To prove vθ ∼ vθ′,
we apply the induction hypothesis on v.

It remains to show that the induction hypothesis applies on v. For σ as given in the
definition of n1, consider the longest sequence of β⊕-reductions from vσ. Since diffsθ,sθ′ is
not a λ-abstraction, substituting it for 0 will not cause additional β⊕-reductions. Hence,
the same sequence of β⊕-reductions can be applied inside sσ = (λ u)σ, proving that
n1(s) ≥ n1(v). Since both s and v have only one variable occurrence, n2(s) = 0 = n2(v).
But n3(s) = S(s) = 1+S(u) because s is nonground. Moreover, S(u) = S(v) = n3(v). Hence,
n3(s) > n3(v), which justifies the application of the induction hypothesis.

Case 4.4: The λ-term s is of the form (λ u) t0 t̄ for some λ-terms u, t0, and t̄. We apply
the induction hypothesis on s′ = u{0 7→ t0} t̄, justified as follows. For σ as given in the
definition of n1, consider the longest sequence of β⊕-reductions from s′σ. Prepending the
reduction sσ →β s′σ to it gives us a longer sequence from sσ. Hence, n1(s) > n1(s

′). The
induction hypothesis gives us s′θ ∼ s′θ′. Since ∼ is invariant under β-reductions, it follows
that sθ ∼ sθ′.

Using the term rewrite system R, we define a higher-order interpretation IIG =
(UIG, JIGty , J

IG,LIG). The construction proceeds as in the completeness proof of the original
λ-superposition calculus [5]. Let (U, J) = R; i.e., Uτ is the universe for the first-order type τ ,
and J is the interpretation function. Since the higher-order and first-order type signatures
are identical, we can identify ground higher-order and first-order types. We will define a
domain Dτ for each ground type τ and then let UIG be the set of all these domains Dτ . We
cannot identify the domains Dτ with the first-order domains Uτ because domains Dτ for
functional types τ must contain functions. Instead, we will define suitable domains Dτ and
a bijection Eτ between Uτ and Dτ for each ground type τ .

We define Eτ and Dτ in mutual recursion. To ensure well definedness, we must show that
Eτ is bijective. We start with nonfunctional types τ : Let Dτ = Uτ , and let Eτ : Uτ → Dτ

be the identity. Clearly, the identity is bijective. For functional types, we define

Dτ→υ = {φ : Dτ → Dυ | ∃s : τ → υ. ∀u : τ. φ (Eτ (JF (u)KR)) = Eυ (JF (s u)KR)}

Eτ→υ : Uτ→υ → Dτ→υ

Eτ→υ(JF (s)KR) (Eτ (JF (u)KR)) = Eυ(JF (s u)KR)

To verify that this equation is a valid definition of Eτ→υ, we must show that

– every element of Uτ→υ is of the form JF (s)KR for some s ∈ Tground(ΣI);
– every element of Dτ is of the form Eτ (JF (u)KR) for some u ∈ Tground(ΣI);
– the definition does not depend on the choice of such s and u; and
– Eτ→υ(JF (s)KR) ∈ Dτ→υ for all s ∈ Tground(ΣI).

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 47

The first claim holds because R is term-generated and F is a bijection. The second
claim holds because R is term-generated and F and Eτ are bijections. To prove the third
claim, we assume that there are other terms t ∈ Tground(ΣI) and v ∈ Tground(ΣI) such
that JF (s)KR = JF (t)KR and Eτ (JF (u)KR) = Eτ (JF (v)KR). Since Eτ is bijective, we have
JF (u)KR = JF (v)KR—i.e., u ∼ v. The terms s, t, u, v are in Tground(ΣI), allowing us to apply
Lemma 4.42 to the term x y and the substitutions {x 7→ s, y 7→ u} and {x 7→ t, y 7→ v}.
Thus, we obtain s u ∼ t v—i.e., JF (s u)KR = JF (t v)KR—indicating that the definition of
Eτ→υ above does not depend on the choice of s and u. The fourth claim is obvious from the
definition of Dτ→υ and the third claim.

It remains to show that Eτ→υ is bijective. For injectivity, we fix two terms s, t ∈
Tground(ΣI) such that for all u ∈ Tground(ΣI), we have JF (s u)KR = JF (t u)KR. By Lemma 4.36,
it follows that JF (s)KR = JF (t)KR, which shows that Eτ→υ is injective. For surjectivity,
we fix an element φ ∈ Dτ→υ. By definition of Dτ→υ, there exists a term s such that
φ (Eτ (JF (u)KR)) = Eυ (JF (s u)KR) for all u. Hence, Eτ→υ(JF (s)KR) = φ, proving surjectiv-
ity and therefore bijectivity of Eτ→υ. Below, we will usually write E instead of Eτ since the
type τ is determined by Eτ ’s first argument.

We define the higher-order universe as UIG = {Dτ | τ ground}. In particular, by
Lemma 4.37, this implies that Do = {0, 1} ∈ UIG as needed, where 0 is identified with [⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥]
and 1 with [⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤]. Moreover, we define JIGty (κ)(Dτ̄) = Dκ(τ̄) for all κ ∈ Σty, completing the

type interpretation of IIGty = (UIG, JIGty) and ensuring that JIGty (o) = Do = {0, 1}.
We define the interpretation function JIG for symbols f : Πᾱm. τ by JIG(f,Dῡm) =

E(JF (f⟨ῡm⟩)KR).
We must show that this definition indeed fulfills the requirements of an interpretation

function. By definition, we have (I1) JIG(⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤) = E(J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KR) = J⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤KR = 1 and (I2) JIG(⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥) =
E(J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KR) = J⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥KR = 0.

Let a, b ∈ {0, 1}, u0 = ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, and u1 = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Then, by Lemma 4.37,

(I3) JIG(∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)(a, b) = E(JF (∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧)KR)(JF (ua)KR, JF (ub)KR)
= E(JF (ua ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ ub)KR) = min{a, b}

(I4) JIG(∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨)(a, b) = E(JF (ua ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ub)KR) = max{a, b}
(I5) JIG(¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)(a) = E(JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬)KR)(JF (ua)KR)

= E(JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR) = JF (¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ua)KR = 1− a

(I6) JIG(→→→→→→→→→→→→→→→→→→→→→→→→→)(a, b) = E(JF (ua →→→→→→→→→→→→→→→→→→→→→→→→→ ub)KR) = max{1− a, b}

(I7) Let Dτ ∈ UIG and a′, b′ ∈ Dτ . Since E is bijective and R is term-generated, there
exist ground terms u and v such that E(JF (u)KR) = a′ and E(JF (v)KR) = b′. Then

JIG(≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈,Dτ)(a
′, b′) = E(JF (≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨τ⟩)KR)(E(JF (u)KR),E(JF (v)KR)) = E(JF (u ≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈⟨τ⟩ v)KR)

which is 1 if a′ = b′ and 0 otherwise by Lemma 4.37. (I8) Similarly JIG(̸≈,Dτ)(a
′, b′) = 0 if

a′ = b′ and 1 otherwise. This concludes the proof that JIG is an interpretation function.
Finally, we need to define the designation function LIG, which takes a valuation ξ and

a λ-expression as arguments. Given a valuation ξ, we choose a grounding substitution θ
such that Dαθ = ξty(α) and E(JF (xθ)KR) = ξte(x) for all type variables α and all variables
x. Such a substitution can be constructed as follows: We can fulfill the first equation in a
unique way because there is a one-to-one correspondence between ground types and domains.
Since E−1(ξte(x)) is an element of a first-order universe and R is term-generated, there

48 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

exists a ground term s such that JsKξR = E−1(ξte(x)). Choosing one such s and defining
xθ = F −1(s) gives us a grounding substitution θ with the desired property.

Let LIG(ξ, λ t) = E(JF ((λ t)θ)KR). We need to show that our definition does not depend
on the choice of θ. We assume that there exists another substitution θ′ with the properties
Dαθ′ = ξty(α) for all α and E(JF (xθ′)KR) = ξte(x) for all x. Then we have αθ = αθ′ for
all α due to the one-to-one correspondence between domains and ground types. We have
JF (xθ)KR = JF (xθ′)KR for all x because E is injective. By Lemma 4.42 it follows that
JF ((λ t)θ)KR = JF ((λ t)θ′)KR, which proves that LIG is well defined. This concludes the
definition of the interpretation IIG = (UIG, JIGty , J

IG,LIG). It remains to show that IIG is
proper.

The higher-order interpretation IIG relates to the first-order interpretation R as follows:

Lemma 4.43. Given a ground λ-term t ∈ T λ
ground(ΣI), we have

JtKIIG = E(JF (t↓β)KR)

Proof. The proof is adapted from the proof of Lemma 40 in Bentkamp et al. [7]. We proceed
by induction on t. If t is of the form f⟨τ̄⟩, then

JtKIIG = JIG(f,Dτ̄)

= E(JF(f⟨τ̄⟩)KR) = E(JF(t↓β)KR)

If t is an application t = t1 t2, where t1 is of type τ → υ, then

Jt1 t2KIIG = Jt1KIIG(Jt2KIIG)
IH
= Eτ→υ(JF(t1↓β)KR)(Eτ (JF(t2↓β)KR))

Def E
= Eυ(JF((t1 t2)↓β)KR)

If t is a λ-expression, then

Jλ uKξ
IIG

= LIG(ξ, λ u)

= E(JF((λ u)θ↓β)KR)
= E(JF((λ u)↓β)KR)

where θ is a substitution as required by the definition of LIG.

We need to show that the interpretation IIG is proper. In the proof, we will need the
following lemma, which is very similar to the substitution lemma (Lemma 3.1), but we must
prove it here for our particular interpretation IIG because we have not shown that IIG is
proper yet.

Lemma 4.44. Let ρ be a grounding substitution, t be a λ-term, and ξ be a valuation.
Moreover, we define a valuation ξ′ by ξ′ty(α) = JαρKξty

IIGty
for all type variables α and ξ′te(x) =

JxρKξ
IIG

for all term variables x. We then have

JtρKξ
IIG

= JtKξ
′

IIG

Proof. The proof is adapted from the proof of Lemma 41 in Bentkamp et al. [7]. We proceed
by induction on the structure of τ and t. The proof is identical to that of Lemma 3.1, except
for the last case, which uses properness of the interpretation, a property we cannot assume

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 49

here. However, here, we have the assumption that ρ is a grounding substitution. Therefore,
if t is a λ-expression, we argue as follows:

J(λ u)ρKξ
IIG

= Jλ uρKξ
IIG

= LIG(ξ, λ uρ) by the definition of the term denotation

= E(JF((λ u)ρθ↓β)KR) for some θ by the definition of LIG

= E(JF((λ u)ρ↓β)KR) because (λ u)ρ is ground
∗
= LIG(ξ′, λ u) by the definition of LIG and Lemma 4.43

= Jλ uKξ
′

IIG
by the definition of the term denotation

The step labeled with ∗ is justified as follows: We have LIG(ξ′, λ u) = E(JF((λ u)θ′↓β)KR)
by the definition of LIG, if θ′ is a substitution such that Dαθ′ = ξ′ty(α) for all α and
E(JF(xθ′↓β)KR) = ξ′te(x) for all x. By the definition of ξ′ and by Lemma 4.43, ρ is such a
substitution. Hence, LIG(ξ′, λ u) = E(JF((λ u)ρ↓β)KR).

Lemma 4.45. The interpretation IIG is proper.

Proof. We need to show that Jλ tK(ξty,ξte)
IIG

(a) = Jt{0 7→ x}K(ξty,ξte[x 7→a])

IIG
, where x is a fresh

variable.

Jλ tK(ξty,ξte)
IIG

(a) = LIG((ξty, ξte), λ t)(a) by the definition of term denotation

= E(JF ((λ t)θ↓β)KR)(a) by the definition of LIG for some θ
such that E(JF (zθ)KR) = ξte(z) for
all z and Dαθ = ξty(α) for all α

= E(JF (((λ t)θ s)↓β)KR) by the definition of E
where E(JF (s)KR) = a

= E(JF (t{0 7→ x}(θ[x 7→ s])↓β)KR) by β-reduction
where x is fresh

= Jt{0 7→ x}(θ[x 7→ s])K
IIG

by Lemma 4.43

= Jt{0 7→ x}K(ξty,ξte[x 7→a])

IIG
by Lemma 4.44

Lemma 4.46. IIG is term-generated; i.e., for all D ∈ UIG and all a ∈ D, there exists a
ground type τ such that JτK

IIGty
= D and a ground term t such that JtK

IIG
= a.

Proof. In the construction above, it is clear that there is a one-to-one correspondence between
ground types and domains, which yields a suitable ground type τ .

Since R is term-generated, there must be a ground term s ∈ TF such that JsKR = E−1(a).
Let t = F −1(s). Then, by Lemma 4.43, JtK

IIG
= E(JsKR) = a.

Lemma 4.47. Given C ∈ CIG, we have IIG |= C if and only if R |= F (C).

Proof. By Lemma 4.43, we have

JtKIIG = E(JF (t↓β)KR)

for any t ∈ Tground(ΣI). Since E is a bijection, it follows that a ground literal s ≈̇ t in a

clause C ∈ CIG is true in IIG if and only if F (s ≈̇ t) is true in R. So any closure C ∈ CIG is
true in IIG if and only if F (C) is true in R.

50 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Theorem 4.48. Let N ⊆ CIG be saturated up to redundancy w.r.t. IGRed I, and ⊥ ̸∈ N .
Then IIG |= N .

Proof. By Lemma 4.47, it suffices to show that R is a model of N . We apply Theorem 4.40.
Lemma 4.16 shows the condition of saturation up to redundancy.

4.4.3. Ground Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
for GInf (Definition 4.9), and let gsel be a selection function on CG.

It is inconvenient to construct a model ofN0 for the G level because J converts parameters
into subscripts. For example, in the model constructed in the previous subsubsection, it
can happen that a ≈ b holds, but fa ≈ fb does not hold, where a and b are constants and
fa and fb are constants originating from a constant f with a parameter. For this reason,
our completeness result for the G level only constructs a model of J (N) ⊆ CIG instead of
N ⊆ CG. We will overcome this flaw when we lift the result to the H level where the initial
clause set can be assumed not to contain any constants with parameters.

Theorem 4.49. Let N ⊆ CG be saturated up to redundancy w.r.t. GRed I, and ⊥ ̸∈ N . Then
IIG |= J (N).

Proof. This follows from Theorem 4.48 and Lemma 4.23.

4.4.4. Full Higher-Order Level. In this subsubsection, let ≻ be an admissible term order
(Definition 2.12), which by Lemma 4.24 is also an admissible term order for GInf , and let
hsel be a selection function on CH (Definition 2.14).

Definition 4.50. A derivation is a finite or infinite sequence of sets (Ni)i≥0 such that
Ni \Ni+1 ⊆ HRedC(Ni+1) for all i. A derivation is called fair if all HInf -inferences from
clauses in

⋃
i

⋂
j≥iNj are contained in

⋃
iHRed I(Ni).

Lemma 4.51. The redundancy criteria HRedC and HRed I fulfill the following properties,
as stated by Waldmann et al. [20]:

(R2) if N ⊆ N ′, then HRedC(N) ⊆ HRedC(N
′) and HRed I(N) ⊆ HRed I(N

′);
(R3) if N ′ ⊆ HRedC(N), then HRedC(N) ⊆ HRedC(N \N ′) and HRed I(N) ⊆ HRed I(N \N ′);
(R4) if ι ∈ HInf and concl(ι) ∈ N , then ι ∈ HRedI(N).

Proof. (R2): This is obvious by definition of clause and inference redundancy.
(R3) for clauses:
Define ▶ as a relation on sets of pairs of a clause C ∈ CH and a grounding substitution

θ, written C · θ, as
C · θ ▶ D · ρ iff Cθ ≻ Dρ or (Cθ = Dρ and C ⊐ D)

Clearly, for all C ∈ CH and all N ⊆ CH, we have C ∈ HRedC(N) if and only if for all
grounding substitutions θ, we have

{F (Eζ) | E ∈ N, ζ grounding, and E · ζ ◀ C · θ} |=oλ F (Cθ)

Now we are ready to prove (R3). Let C ∈ HRedC(N). We must show that C ∈
HRedC(N \N ′). Let θ be a grounding substitution. We must show that

{F (Eζ) | E ∈ N \N ′, ζ grounding, and E · ζ ◀ C · θ} |=oλ F (Cθ)

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 51

Since C ∈ HRedC(N), we know that

{F (Eζ) | E ∈ N, ζ grounding, and E · ζ ◀ C · θ} |=oλ F (Cθ)

So it suffices to show that

{F (Eζ) | E ∈ N \N ′, ζ grounding, and E · ζ ◀ C · θ}
|=oλ {F (Eζ) | E ∈ N, ζ grounding, and E · ζ ◀ C · θ}

Let E0 ∈ N and ζ0 grounding with E0 · ζ0 ◀ C · θ. We will show by well-founded induction
on E0 · ζ0 w.r.t. ◀ that

{F (Eζ) | E ∈ N \N ′, ζ grounding, and E · ζ ◀ C · θ} |=oλ F (E0ζ0) (∗)
Our induction hypothesis states:

{F (Eζ) | E ∈ N \N ′, ζ grounding, and E · ζ ◀ C · θ}
|=oλ {F (Eζ) | E ∈ N, ζ grounding, and E · ζ ◀ E0 · ζ0}

If E0 ∈ N \N ′, the claim (∗) is obvious. So we may assume that E0 ∈ N ′. The assumption
of (R3) states N ′ ⊆ HRedC(N), and thus we have

{F (Eζ) | E ∈ N, ζ grounding, and E · ζ ◀ E0 · ζ0} |=oλ F (E0ζ0)

By the induction hypothesis, this implies (∗).
(R3) for inferences:
Inspecting this definition of HRed I (Definition 2.25), we observe that to show that

HRed I(N) ⊆ HRed I(N \N ′), it suffices to prove that

{E ∈ F (G(N \N ′)) | E ≺F F (Cmθm)}
|=oλ

{E ∈ F (G(N)) | E ≺F F (Cmθm)}

(possibly without the condition E ≺F F (Cmθm) for Diff inferences), where Cm and θm are
given in the definition of HRed I. We can equivalently write this as

{F (Eζ) | E ∈ N \N ′, ζ grounding, and Eζ ≺ Cmθm}
|=oλ {F (Eζ) | E ∈ N, ζ grounding, and Eζ ≺ Cmθm}

Let E0 ∈ N and ζ0 grounding with E0ζ0 ≺ Cmθm. We must show that

{F (Eζ) | E ∈ N \N ′, ζ grounding, and Eζ ≺ Cmθm} |=oλ F (E0ζ0) (†)
If E0 ∈ N \ N ′, the claim (†) is obvious. So we may assume that E0 ∈ N ′. The

assumption of (R3) states N ′ ⊆ HRedC(N), and thus N ′ ⊆ HRedC(N \ N ′) by (R3) for
clauses. So we have

{F (Eζ) | E ∈ N \N ′, ζ grounding, and E · ζ ◀ E0 · ζ0} |=oλ F (E0ζ0)

This implies (†) because for any E · ζ with E · ζ ◀ E0 · ζ0, we have Eζ ⪯ E0ζ0 ≺ Cmθm.
(R4) Let ι ∈ HInf with concl(ι) ∈ N . We must show that ι ∈ HRed I(N). Let C1, . . . ,

Cm be ι’s premises and Cm+1 its conclusion. Let θ1, . . . , θm+1 be a tuple of substitutions
for which ι is rooted in FInf (Definition 2.24). According to the definition of HRed I

(Definition 2.25), we must show that

– F (G(N)) |=oλ F (Cm+1θm+1) if ι is a Diff inference; and
– {E ∈ F (G(N)) | E ≺F F (Cmθm)} |=oλ F (Cm+1θm+1) if ι is some other inference.

52 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

Since concl(ι) ∈ N and concl(ι) = Cm+1, we have Cm+1 ∈ N . Thus, F (Cm+1θm+1) ∈
F (G(N)). This completes the proof for Diff inferences because F (Cm+1θm+1) |=oλ

F (Cm+1θm+1). For the other inferences, it remains to prove that F (Cm+1θm+1) ≺F
F (Cmθm).

By Definition 2.24, F (Cmθm) is the main premise and F (Cm+1θm+1) is the conclusion
of an FInf inference. We will show for each FInf rule that the conclusion is smaller than
the main premise.

By Lemma 4.5, ≻JF =≻F . By Lemmas 4.18 and 4.12, it follows that ≻F is admissible
for FInf .

For FSup, we must argue that C[t] ≻F D′ ∨ C[t′]. Since the literal t ≈ t′ is strictly
eligible in D and if t′ is Boolean, then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, the literal t ≈ t′ is strictly maximal in D.
Since the position of t is eligible in C[t], it must either occur in a negative literal, in a literal
of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, or in a maximal literal in C[t]. If the position of t is in a negative literal
or in a literal of the form t ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥, then that literal is larger than t ≈ t′ because if t′ is Boolean,
then t′ = ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Thus, the literal in which t occurs in C[t] is larger than D′ because t ≈ t′ is
strictly maximal in D. If the position of t is in a maximal literal of C[t], then that literal is
larger than or equal to t ≈ t′ because D ≺F C[t], and thus it is larger than D′ as well. In
C[t′], this literal is replaced by a smaller literal because t ≻F t′. So C[t] ≻F D′ ∨ C[t′].

For FEqRes, clearly, C ′ ∨ u ̸≈ u ≻F C ′.
For FEqFact, we have u ≈ v ⪰F u ≈ v′ and thus v ⪰F v′. Since u ≻F v, we have

u ≈ v ≻F v ̸≈ v′ and thus the premise is larger than the conclusion.
For FClausify, it is easy to see that for any of the listed values of s, t, and D, we have

s ≈ t ≻F D, using (O3)F and (O4)F. Thus the premise is larger than the conclusion.
For FBoolHoist and FLoobHoist, we have u ≻F ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and u ≻F ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ by (O4)F because

u ̸= ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ and u ̸= ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤. Moreover, the occurrence of u in C[u] is required not to be in a literal of
the form u ≈ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ or u ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤, and thus, by (O4)F, it must be in a literal larger than these. It
follows that the premise is larger than the conclusion.

For FFalseElim, clearly, C ′ ∨ ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ ≈ ⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤⊤ ≻F C ′.
For FArgCong, the premise is larger than the conclusion by (O5)F.
For FExt, we use the condition that u ≻F w and (O3)F to show that C[F (w)] is

smaller than the premise. We use u ≻F w and (O5)F to show that F (u diff⟨τ, υ⟩(u,w)) ̸≈
F (w diff⟨τ, υ⟩(u,w)) is smaller than the premise.

Theorem 4.52. Given a fair derivation (Ni)i≥0, where

1. N0 does not have a term-generated model,
2. N0 does not contain parameters,

we have ⊥ ∈ Ni for some index i.

Proof. By Lemma 9 of Waldmann et al. [20], using Lemma 4.51, the limit N∞ =
⋃

i

⋂
j≥iNj

is saturated up to redundancy w.r.t. HInf and HRed I. By Lemma 4.29, G(N∞) is saturated
up to redundancy w.r.t. GInf and GRed I.

For a proof by contradiction, assume that for all i, ⊥ ̸∈ Ni. Then N∞ does not contain
⊥ either, and thus G(N∞) does not contain ⊥. By Lemma 4.49, IIG |= J (G(N∞)).

By Lemma 8 of Waldmann et al. [20], using Lemma 4.51, N0 ⊆ N∞ ∪ HRedC(N∞).
Thus, F (G(N∞)) |=oλ F (G(N0)). Since IIG |= J (G(N∞)), by Lemma 4.47 and Lemma 4.5,
it follows that IIG |= J (G(N0)).

Now IIG can be shown to be a model of N0 as follows. Let C ∈ N0. Let ξ be a
valuation. Since IIG is term-generated by Lemma 4.46, there exists a substitution θ such

SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION 53

that JαθK
IIGty

= ξty(α) for all type variables α in C and JxθK
IIG

= ξte(x) for all term variables
x in C. Since C does not contain parameters by condition 2 of this theorem, Cθ ∈ J (G(N0)).
Thus we have IIG |= Cθ. By Lemma 3.2, it follows that C is true w.r.t. ξ and IIG. Since ξ
and C ∈ N0 were arbitrary, we have IIG |= N0. This contradicts condition 1 of the present
theorem.

Lemma 4.53. Let N be a clause set that does not contain diff. If N has a term-generated
model, then N has a diff-aware model.

Proof. Let I = (Ity, J,L) be a model of N . We assume that the signature of I does not
contain diff. We extend it into a diff-aware model I′ = (I′ty, J

′,L′) as follows.
We define J′(diff,D1,D2, a, b) to be an element e ∈ D1 such that a(e) ̸= b(e) if such an

element exists and an arbitrary element of D1 otherwise. This ensures that I′ is diff-aware
(Definition 1.1).

To define L′, let ξ be a valuation and t be a λ-abstraction. We replace each occurrence
of diff⟨τ, υ⟩(u,w) in t with a ground term s that does not contain diff such that JsKI =
J′(diff, JτKξtyIty

, JυKξtyIty
, JuKξI , JwKξI). Such a term s exists because I is term-generated. We start

replacing the innermost occurrences of diff and proceed outward to ensure that the parameters
of a replaced diff do not contain diff themselves. Let t′ be the result of this replacement.
Then we define L′(ξ, t) = L(ξ, t′). This ensures that I′ is a proper interpretation.

Since N does not contain diff and I is a model of N , it follows that I′ is a model of N
as well.

Corollary 4.54. Given a fair derivation (Ni)i≥0, where

1. N0 |≈ ⊥, and
2. N0 does not contain parameters,

we have ⊥ ∈ Ni for some index i.

Proof. By Theorem 4.52 and Lemma 4.53.

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput., 4(3):217–247, 1994.

[2] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume I, pages 19–99. Elsevier and MIT Press,
2001.

[3] Alexander Bentkamp, Jasmin Blanchette, and Matthias Hetzenberger. Term orders for optimistic super-
position (unpublished manusscript). https://nekoka-project.github.io/pubs/optimistic_orders.
pdf.

[4] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirović. Errata of “Superposition
for higher-order logic”. https://matryoshka-project.github.io/pubs/hosup_article_errata.pdf.

[5] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirović. Superposition for
higher-order logic. J. Autom. Reason., 67(1):10, 2023.

[6] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe Waldmann. Errata
of “Superposition with lambdas”. https://matryoshka-project.github.io/pubs/lamsup_article_
errata.pdf.

[7] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe Waldmann.
Superposition with lambdas. J. Autom. Reason., 65(7):893–940, 2021.

https://nekoka-project.github.io/pubs/optimistic_orders.pdf
https://nekoka-project.github.io/pubs/optimistic_orders.pdf
https://matryoshka-project.github.io/pubs/hosup_article_errata.pdf
https://matryoshka-project.github.io/pubs/lamsup_article_errata.pdf
https://matryoshka-project.github.io/pubs/lamsup_article_errata.pdf

54 SIMPLIFIED VARIANT OF OPTIMISTIC LAMBDA-SUPERPOSITION

[8] Christoph Benzmüller, Nik Sultana, Lawrence C. Paulson, and Frank Theiss. The higher-order prover
Leo-II. J. Autom. Reason., 55(4):389–404, 2015.

[9] Frédéric Blanqui, Jean-Pierre Jouannaud, and Albert Rubio. The computability path ordering. Log.
Meth. Comput. Sci., 11(4), 2015.

[10] Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408, 2012.
[11] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula

manipulation, with application to the Church–Rosser theorem. Indag. Math, 75(5):381–392, 1972.
[12] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commun. ACM,

22(8):465–476, 1979.
[13] Melvin Fitting. Types, Tableaus, and Gödel’s God. Kluwer, 2002.
[14] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem Proving Environment for

Higher Order Logic. Cambridge University Press, 1993.
[15] Cezary Kaliszyk, Geoff Sutcliffe, and Florian Rabe. TH1: The TPTP typed higher-order form with

rank-1 polymorphism. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors, PAAR-2016, volume
1635 of CEUR Workshop Proceedings, pages 41–55. CEUR-WS.org, 2016.

[16] Dénes Kőnig. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. (Szeged),
3499/2009(3:2–3):121–130, 1927.

[17] Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirović. Errata of “Superposition
with first-class booleans and inprocessing clausification”. https://matryoshka-project.github.io/
pubs/boolsup_errata.pdf.

[18] Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirović. Superposition with first-
class Booleans and inprocessing clausification. In André Platzer and Geoff Sutcliffe, editors, CADE-28,
volume 12699 of LNCS, pages 378–395. Springer, 2021.

[19] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2-3):111–126, 2002.
[20] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A comprehensive framework

for saturation theorem proving. J. Autom. Reason., 66(4):499–539, 2022.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://matryoshka-project.github.io/pubs/boolsup_errata.pdf
https://matryoshka-project.github.io/pubs/boolsup_errata.pdf

	1. Logic
	1.1. Syntax
	1.1.1. Types
	1.1.2. Lambda-Preterms and Lambda-Terms
	1.1.3. Preterms and Terms
	1.1.4. Substitutions
	1.1.5. Clauses

	1.2. Semantics
	1.3. The Extensionality Skolem Constant

	2. Calculus
	2.1. Orange, Yellow, and Green Subterms
	2.2. Complete Sets of Unifiers
	2.3. Term Orders and Selection Functions
	2.4. Concrete Term Orders
	2.5. The Core Inference Rules
	2.6. Redundancy
	2.6.1. Clause Redundancy
	2.6.2. Inference Redundancy

	2.7. Simplification Rules
	2.7.1. Analogues of First-Order Simplification Rules
	2.7.2. Additional Simplification Rules

	2.8. Examples

	3. Soundness
	4. Refutational Completeness
	4.1. Logics and Encodings
	4.1.1. First-Order Encoding
	4.1.2. Indexing of Parameters

	4.2. Calculi
	4.2.1. Indexed Ground Higher-Order Level
	4.2.2. Ground Higher-Order Level

	4.3. Redundancy Criteria and Saturation
	4.3.1. First-Order Level
	4.3.2. Indexed Ground Higher-Order Level
	4.3.3. Ground Higher-Order Level
	4.3.4. Full Higher-Order Level

	4.4. Model Construction
	4.4.1. First-Order Levels
	4.4.2. Indexed Ground Higher-Order Level
	4.4.3. Ground Higher-Order Level
	4.4.4. Full Higher-Order Level

	References

