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Superposition is a highly successful proof calculus for reasoning about first-order logic with equality. We
present \-superposition, which extends superposition to higher-order logic. Its design goals include sound-
ness, completeness, efficiency, and gracefulness with respect to standard first-order superposition. The cal-
culus is implemented in two automatic theorem provers: E and Zipperposition. These provers regularly
win trophies at the CADE ATP System Competition, confirming the calculus’s applicability. This paper is a
summary of research that took place between 2017 and 2022.

1. INTRODUCTION

Higher-order logic (also called simple type theory) [Church 1940; Gordon and Mel-
ham 1993; Andrews 2002] is a rich logic that generalizes classical first-order logic to
allow functions as first-class objects. The term language is that of the simply typed
A-calculus. Terms are considered syntactically equal modulo a-, 8-, and 7n-conversion—
for example, (Az. x) c is syntactically equal to c. A formula or proposition is simply
a term of Boolean type. Some formulations of higher-order logic allow polymorphism.
To aid readability, binary connectives and other operators are normally written in in-
fix syntax, and the universal and existential quantifiers are written using traditional
notations. Thus, we write p A ¢ and Vz. p  rather than A p g and V (A\z. p ).

Higher-order logic is widely used as the basis of proof assistants such as HOL4 [Slind
and Norrish 2008], HOL Light [Harrison 2009], and Isabelle/HOL [Nipkow et al. 2002].
It is also a fragment of classical dependent type theory, as found for example in Lean
[de Moura and Ullrich 2021]. With its native notion of syntactic binding, it is a natural
language for expressing a wide range of mathematics.

Consider the following mathematical statements:

(Cim 2+ 1) = (Zi ) + (23 20) + (25, 1)
f(n) +g(n) € O(h(n)) = f(k(n)) + g(k(n)) € O(h(k(n)))

Notice that the i’s are bound by the big sum operators in the first statement and the
n’s are bound by the O’s in the second statement. The statements can be encoded in
higher-order logic as the following formulas, using A-abstractions to bind variables
locally:

sum1ln (XN.i"242xi+1)=sum1n (X.i"2)+sum1n (M. 2%i)+sum1ln (Ni. 1)
(M. fn+gn)€0 (An.hn) = (An. f(kn)+g(kn)) €0 (An.h (kn))

With suitable definitions and lemmas for the symbols they contain, these formulas are
provable.

Proving higher-order formulas automatically is interesting because it increases the
productivity of users of proof assistants. One way to prove higher-order formulas, im-
plemented in tools such as Sledgehammer [Paulson and Blanchette 2012], is to encode
them in first-order logic—for example, using SKBCI combinators [Turner 1979]. For the
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two formulas above, this would yield the following:

sum 17 (C (B (+) (S (B (+) (C (") 2)) ((x) 2))) 1)
=sum1n (C(")2)+sumln((x)2)+sumln (K1)

SB(+)f)geOh=SB(+)(Bfk)(Bgk)cO (BhE)

In addition, the definitions of the SKBCI combinators would have to be included in the
problem:

Szyz=z2(yz) Kazy=xz Bzyz=z(yz) Czyz=zzy lz==x

To see why the translation works, we can replace S by its closed-term definition Az y z.
x z (y z) in the encoded formulas above, and similarly for the other combinators. Up to
B-conversion, we obtain the original formulas.

Finally, curried applications should be replaced by a distinguished symbol app—for
example, | z = x would become app(l,z) = z. The result is a first-order problem, which
can be given to first-order provers.

In practice, the encoding approach underperforms on genuinely higher-order formu-
las. In the presence of extraneous axioms (which often cannot be avoided), first-order
provers time out on the two examples above. Facing such failures, the user of a proof
assistant would have to carry out a manual proof, wasting time.

The obvious alternative to the clumsy encoding of higher-order logic using combina-
tors and app is to go native. The last few years have seen the rise of a new generation of
efficient automatic theorem provers for higher-order logic: cveb [Barbosa et al. 2019],
E [Vukmirovié et al. 2023], Leo-III [Steen and Benzmiiller 2021], Vampire [Bhayat
and Reger 2020a], veriT [Barbosa et al. 2019], and Zipperposition [Vukmirovié et al.
2022]. Like their predecessors, these provers can reason natively about higher-order
constructs such as A\-abstractions and currying. But unlike their predecessors, they are
based on proof calculi modeled after the most successful approaches from the world of
first-order logic: superposition [Bachmair and Ganzinger 1994] and satisfiability mod-
ulo theories (SMT) [Nieuwenhuis et al. 2006].

In this paper, we present one of these native higher-order proof calculi: A-super-
position [Bentkamp et al. 2023b]. It is a variant of standard superposition and under-
lies E and Zipperposition, to which we contributed.

Our first design goal has been to extend standard superposition in a graceful fashion,
following the zero-overhead principle: “What you don’t use, you don’t pay for” [Strous-
trup 1995]. The extension should behave, as much as possible, like standard superpo-
sition on formulas belonging to the first-order fragment of higher-order logic, and scale
well in the presence of higher-order constructs. We wanted to start from a position of
strength, to benefit from the decades of research that had led to superposition.

Other design goals were soundness and refutational completeness. When designing a
calculus, we care about its completeness because a complete calculus is likely to prove
more formulas than an incomplete one. We also care because the completeness proof
gives invaluable information that guides the development of an efficient calculus. In
the same way that superposition is refutationally complete with respect to standard
first-order models, A-superposition is refutationally complete with respect to general
(Henkin) models. It is not, however, complete with respect to standard models—by
Godel’s incompleteness theorem, this would be too much to ask of a sound calculus for
higher-order logic.

A fourth design goal was efficiency. Our calculus performs well in practice, both on
examples originating from proof assistants [Desharnais et al. 2022; Vukmirovi¢ et al.
2023] and at the CADE ATP System Competition (CASC), where E and Zipperposition
collectively won six trophies since 2020.
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This article is structured as follows. Section 2 presents the standard superposition
calculus, after which \-superposition is modeled. Section 3 presents the complete-
ness proof of standard superposition. Section 4 introduces A-superposition. Section 5
presents its completeness proof. Section 6 surveys competing approaches. Section 7
reviews the CASC results. Section 8 concludes the article.

This article summarizes our research on A-superposition. It follows another piece,
published in the Communications of the ACM [Bentkamp et al. 2023a], which had a
similar objective but addressed a wider audience. The present article omits some pre-
liminaries and delves deeper into the metatheory of superposition and A-superposition,
with the emphasis on the completeness proofs.

2. THE SUPERPOSITION CALCULUS

The superposition calculus [Bachmair and Ganzinger 1994] works not directly on for-
mulas of first-order logic but on clauses. The clauses are obtained by putting the prob-
lem axioms and the negated conjecture in clausal normal form [Nonnengart and Wei-
denbach 2001]. From these clauses, the calculus attempts to derive L, denoting false-
hood. A successful refutation amounts to a proof of the original (unnegated) conjecture.

Clauses are defined as follows. Given two first-order terms s, ¢, the equality s = ¢,
viewed as an unordered pair, is an atom. Equality is the only predicate in superposi-
tion; other predicates can be encoded as functions, writing p(f) = true instead of p(?).
Next, s = ¢ and its negation s # ¢ (also viewed as an unordered pair) are literals. A
clause L1 V---V L, is then a finite multiset of literals. If n = 0, we get the empty clause
L. Notice that by commutativity of the elements of unordered pairs and multisets, the
clausesa=bVc=dand d =cVb = a are equal.

Consider the problem consisting of the two axioms Vz. g(z) = f(x) and g(a) = 0 and
the conjecture f(a) = 0. After clausification, the problem consists of three clauses:

g(z) = f(z) ga)=0 f(a) #0

Once the problem is in clausal form, the prover can attempt to saturate it—that is, to
perform all possible inferences from the current clause set and add their conclusions
to the set. The set keeps on growing until | is derived, or until no more inferences
are possible. If the clause set is satisfiable, the prover might also run forever, never
deriving L.

The superposition calculus consists of inference rules that are performed in this
saturation process. A simplistic version of the calculus is presented below:

D'vt=t C'vst]=+ C'Vu#u
Sup — ERES
D'vCvs[t)=s c’

The premises are displayed above the horizontal bar and the conclusion below. The
conclusion is generated only if all premises belong to the current clause set. Both oc-
currences of the symbol = simultaneously denote either = or #. The notation | | stands
for a context around a subterm. The context may be empty.

This simplistic presentation ignores four features. First, only ground (i.e., variable-
free) clauses are considered, but superposition in general supports clauses with vari-
ables. We will come back to this. Second, superposition is parameterized by a term
order that restricts the calculus, leading to a smaller search space. We will also come
back to this. Third, superposition includes a selection mechanism that works in tan-
dem with the term order to restrict inferences. We will ignore it to simplify the presen-
tation. Fourth, superposition has a third rule, which is rarely needed in practice but
nonetheless necessary for completeness. We will also ignore it.
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The SUP rule is the main engine of superposition, hence its name. If we for a moment
ignore C' and D, it uses an equation ¢ = ¢’ to rewrite some term s that contains ¢,
replacing ¢t by t’. The extra literals in C' and D can be viewed as conditions on the
respective (dis)equations. For example, C' V¢t = ¢ can be read as -C = t = t’. The
literals from C' and D must be added to the conclusion; otherwise, the rule would not
be sound—the conclusion would not be entailed by the premises.

The other main rule is ERES (equality resolution). It simply eliminates a trivially
false literal v # u from a clause.

Example 2.1. Let us try to saturate the unsatisfiable clause set {g(a) = f(a), g(a) =
0, f(a) # 0}. First, we can apply the SUP rule with the second and first clauses, in that
order, as premises, generating the conclusion 0 = f(a). A second SUP inference is now
possible, with this new clause as the left premise and f(a) # 0 as the right premise,
and 0 # 0 as the conclusion. At this point, ERES can be applied to derive |, and we
stop the saturation process.

Example 2.2. The simplistic version of the calculus is very explosive, as this exam-
ple will show. Consider the clause set {e = d, d = ¢, c = b, b = a, f(e) # f(a)}. The
clauses we are interested in generating are of the form f(s) # f(s), because given any
such clause we can apply ERES to derive L. The shortest chains of SUP reasoning that
leads to f(s) # f(s) requires four steps. For example:

—From e = d and f(e) # f(a), derive f(d) # f(a).
— From d = c and f(d) # f(a), derive f(c) # f(a).
—From c = b and f(c) # f(a), derive f(b) # f(a).
—From b = a and f(b) # f(a), derive f(a) # f(a).

But if we are not careful, we might end up deriving 52 (= 25) clauses of the form
f(s) # f(s'). This kind of freedom can lead the prover to explore an excessively large
search space.

The explosion of Example 2.2 can be averted in the calculus without relying on
heuristics of the prover. The idea is to fix a total well-founded order < on all ground
terms, the term order, and to restrict the calculus so that it focuses on the largest
terms; for example, the SUP rule is applicable only if ¢ is the larger side of the largest
literal of the first premise, and similarly for s[t] in the second premise. Typical choices
for the term order are the Knuth—Bendix order [Knuth and Bendix 1970] and the lex-
icographic path order [Kamin and Lévy 1980].

Although not needed in theory, the term order is crucial to obtain good performance.
When faced with a clause Ly V ---V L,,, where L, < --- < L,,, the prover first focuses
on L,, trying to eliminate it using SUP and ERES. Then it proceeds to the next largest
literal. If it gets stuck while trying to eliminate L,, the other literals will never be
visited—a considerable gain.

The situation is analogous to when we want to apply a lemma of the form “If H; and

. and H,, then F” in a pen-and-paper proof. To use the lemma, we need to show the
hypotheses Hy,..., H,. Without loss of generality, we can fix the order H; < --- < H,
and first try to show H,,, then H, 1, and so on until H;. If we fail at showing H,,, there
is no point in continuing with H,_;; we will never be able to use F' anyway.

So far, we have assumed that clauses are ground, but superposition supports vari-
ables. Like in mathematics, variables are understood to be V-quantified. Thus, assum-
ing that our signature contains the nullary functions (i.e., constants) a and b, the unary
function f, and no other functions, a clause such as C(z), where x is a variable, rep-
resents, in the spirit of Herbrand interpretations, the infinite set of ground clauses
C(a), C(b), C(f(a)), C(f(b)), C(f(f(a))), C(f(f(b))), ..., where x is instantiated with all
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possible terms that can be built using the signature. (This process assumes that the
signature contains at least one nullary symbol. We can extend the signature if needed.)

Suppose that we have the two clauses C(y) vV f(a,y) = 0 and D(z) V f(z, b) # 0, where
C(y) denotes a clause that depends on y and D(z) a clause that depends on x. The
terms f(a,y) and f(z, b) are not syntactically identical, but they can be made the same
by taking xz := a and y := b—i.e., by unifying [Robinson 1965] the two terms. After
instantiating the variables, we get the two clauses

C(b)Vf(a,b) =0 D(a) Vf(a,b) £ 0

From these clauses, a SUP inference derives C(b) V D(a) vV 0 # 0.

In first-order logic, if two expressions are unifiable, then there exists a variable as-
signment that captures that fact in the most general manner possible, up to the nam-
ing of variables. This variable assignment is called the most general unifier. We can use
it to compute the substitution to use in the conclusion of the superposition inference
rules:

D'vt=+ C'V s[u] = ¢ C'Vu#u
Sup —ERES
(D'vC' Vst =s)o C'o
In SUP, o is the most general unifier of ¢t and u. In ERES, ¢ is the most general unifier
of u and u'.

Example 2.3. Consider the clause set {g(z) = f(z), g(a) = 0, f(a) # 0}. This example
is similar to Example 2.1, but this time the first clause contains a variable. Let us try
to derive L. First, we can apply the SUP rule with the second and first clauses, in that
order, as premises, generating the conclusion 0 = f(a). This unifies g(x) and g(a). The
rest of the saturation is as in Example 2.1.

Example 2.4. We will use superposition to prove the following lemma:

(Vz. x # zero = inv z = div one )
A pi # zero
= abs (inv pi) = abs (div one pi)

Conversion into clausal normal form produces the clause set

x =zero V divonez =invx 1)
pi # zero (2)
abs (div one pi) # abs (inv pi) (3)

In each clause, underlining identifies the larger sides of the largest literals according
to the Knuth-Bendix order with a weight of 1 for each symbol and the reverse alpha-
betical order as the precedence. If we take x := pi in clause (1), the underlined term
in (1) matches a subterm of the underlined term in clause (3). Thus, we can apply SUP
using as premises clauses (1) and (3) to generate

pi = zero V abs (inv pi) # abs (inv pi) 4

Next, we apply ERES to clause (4) to generate
pi = zero (5)

Now that the larger literal of (4) has been eliminated, we can work on the remaining
literal. Multiple SUP inferences are possible: between (5) and (2), between (5) and (3),
or between (5) and (4). The first one generates

zero # zero (6)
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Finally, an ERES inference on clause (6) yields |, thereby proving the original lemma.

When saturating, a prover might identify clauses that are useless, either because
they are tautologies or because they are entailed by other, smaller clauses. These
clauses are called redundant and can be deleted at any point during the saturation
process. For example, f(x) = 0V f(z) = 1 is redundant with respect to the more in-
formative clause f(x) = 0. Formally, we write f(z) = 0V f(z) = 1 € Red({f(z) = 0}).
In general, for a clause set N, the set Red(IV) consists of all the clauses that are re-
dundant with respect to V. Removing redundant clauses is vital for performance in
practice.

There is also an analogous notion of redundant inference. An inference is called
redundant with respect to a clause set N if its conclusion is already in N or redundant
with respect to V. Thus, performing an inference (i.e., adding its conclusion to N) is a
sure way to make it redundant.

3. COMPLETENESS OF SUPERPOSITION

An important property of the superposition calculus is that it is refutationally complete
[Bachmair and Ganzinger 1994]. Intuitively, this property tells us that the prover will
always find a proof if there is one. Alternatively, focusing just on what happens after
negating the conjecture and clausification, refutational completeness means that the
calculus will always derive the empty clause if the initial clause set is unsatisfiable.
Formally:

Definition 3.1. A clause C is inductively defined to be derivable by a (clausal) in-
ference system I' from a clause set N, written N - C, if C € N or if there exists a
I'-inference with conclusion C' and premises that are derivable by I" from N.

An inference system I is refutationally complete if for all clause sets N, we have that
N E L implies N bFr L.

However, given the possibility that the prover may remove redundant clauses during
a derivation, this simple definition does not accurately reflect what might happen in an
implementation. That is why we prefer to represent the state of the prover over time
as a sequence of sets of clauses Ny, Ny, .... At each step, N, 1 \ NV; are the clauses that
the prover newly derived, and N, \ N,;; are the clauses that the prover decided to re-
move. We require that the removed clauses are redundant—i.e., N;\ N;11 C Red(N;41).
Moreover, we want the prover to eventually perform all possible I'-inferences except for
redundant inferences. Formally, we can enforce this by requiring that the conclusions
of all I'-inferences from the limit inferior | J;(;-, IN; are contained in [ J; N; U Red(NV;).
A sequence Ny, Ny, ... that fulfills these requirements is called a fair derivation. In
other words, in a fair derivation, every possible inference is eventually performed or
otherwise made redundant. Based on this notion, we can define a notion of refutational
completeness that allows for deletion of redundant clauses:

Definition 3.2. We call (I', Red) dynamically refutationally complete if for every fair
derivation Ny, Ny,... with Ny = L, we have L € N; for some 1.

Completeness as per Definition 3.1 corresponds to the special case of Definition 3.2
with the trivial redundancy criterion, which deletes no clauses.

Under reasonable assumptions about the redundancy criterion, we can show that
dynamic refutational completeness is equivalent to the following property:

Definition 3.3. A clause set N is saturated up to redundancy if every inference from
N is redundant with respect to N. An inference system with redundancy (T, Red) is
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statically refutationally complete if all sets N of formulas saturated up to redundancy
with L ¢ N are satisfiable.

To prove that superposition is statically refutationally complete, we fix a set N with
1 ¢ N and assume that it is saturated up to redundancy. We must then show that this
set is satisfiable by constructing a model of V.

We first construct an interpretation that we will show to be model of the set of ground
clauses

G(N)={C6 | C € N and 0 is a substitution such that C is ground}

Considering these ground clauses first is simpler because we can define a total order
on ground clauses—the clause order—based on the term order used by superposition.
The construction naturally only works if | ¢ N. Iterating over the clauses in G(V)
following this clause order, we collect a set of equalities and define an interpretation
such that two terms are equal in the interpretation if and only if one can rewrite the
terms into each other using the collected set of equalities. Concretely, iterating over
each clause C € G(N) in clause order, we collect the equality s = ¢ if

— C'is of the form C’ V s = t where s =t is the largest literal in C;

— (' is false in the interpretation resulting from the previously collected equalities;

— (' will remain false when we add the equality s = ¢; and

— the larger sides of the equalities collected so far are not subterms of the larger side
of s =t.

Otherwise, we do not collect any equality and proceed with the next clause.

For example, let N ={a=b,a#bVc=d} wherea=b <a#b<c=d. All clauses
are ground, so G(N) = N. The smallest clause is a = b. In the absense of any collected
equalities, it is currently false and also fulfills the other conditions above. Thus, we
collect the equality a = b. The next clause is a # bV c = d. It is also false in the current
interpretation resulting from the collected equality a = b. Since the other conditions
are fulfilled as well, we collect the equality ¢ = d. The two collected equalities now
yield a model of V.

For a different example, let N ={a=b,a#bVc=d, a+#bVc+#d}. The procedure
collects the equalities a = b and ¢ = d as before. The new clause a # bV c # d,
however, is not of the form C’ vV s = ¢t and we do not collect an equality. The resulting
interpretation based on the equalities a = b and ¢ = d is not a model of this last clause.
The construction fails in this regard when the set NV is not saturated up to redundancy.
Here, N is not saturated because a SUP inference between the second and the third
clause is possible:

a#bVvc=d a#bVvc#d
a#bVvc=c

Sup

Based on this idea, by well-founded induction with respect to the clause order, we
can show that the constructed interpretation is indeed a model of G(V). The inductive
argument is roughly as follows: As our induction hypothesis, we assume that the con-
structed interpretation is a model of all clauses in G(V) that are smaller than a given
clause C0 € G(N). To show that the interpretation is also a model of C, we assume
that it is not a model of C@ for a proof by contradiction. Using this assumption, we can
show that there exists an inference from C, and by saturation up to redundancy, this
inference must be redundant. So its conclusion must be in N or redundant with re-
spect to V. Moreover, we can show that a ground instance of this conclusion is smaller
than C6 and thus, by the induction hypothesis, this ground instance of the conclusion
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is true in the constructed interpretation. We can then argue that this contradicts the
assumption that C6 is false in the constructed interpretation.

Finally, we can show that the constructed model of G(XV) is also a model of N, prov-
ing static refutational completeness. The proof is straightforward because a clause is
equivalent to its groundings, due to the special structure of the constructed model.

4. LAMBDA-SUPERPOSITION

In our venture to generalize superposition to higher-order logic, we encountered vari-
ous obstacles. The challenge was to overcome them without compromising our design
goals of gracefully generalizing the first-order calculus, proving the higher-order cal-
culus sound and refutationally complete, and designing a calculus that can be imple-
mented efficiently.

4.1. Term Order

In standard superposition, the term order must fulfill certain properties for the com-
pleteness proof to work. Two of them are:

— totality on ground terms: for two distinct ground terms, we have u < v or u = v;
— compatibility with contexts: u > v implies s[u] > s[v].

The first property is required to construct the total order on ground clauses used for
the induction argument, and the second property is used to show that the conclusion
of a ground superposition inference is smaller than its right premise, which we need
to apply the induction hypothesis.

In higher-order logic, considering terms modulo 3-conversion and defining ground
terms as terms without free variables, these properties cannot be fulfilled: To see why,
let a < b < c be constants. Consider the terms A\z. b and Az. . By totality on ground
terms, we must have A\x. b < Az. z or Axz. b = Az. z. In the first case, by compatibility
with contexts, using the context ... a, we have b = (Az. b) a < (Az. ) a = a, in
contradiction to a < b. In the second case, by compatibility with contexts, using the
context ... ¢, we have b = (Az. b) ¢ > (A\z. z) ¢ = ¢, in contradiction to b < c.

We can overcome this issue by noticing that it only occurs with contexts that would
not be considered valid contexts in first-order logic, such as ... a and ... c. We call
contexts that would be considered valid in first-order logic green contexts:

Definition 4.1. We define green subterms inductively as follows: A term ¢ is a green
subterm of ¢. If u is a green subterm of ¢;, then u is a green subterm of f ¢; --- ¢, for
a symbol f and terms ¢4, ..., t,,. We write sCu) for a term s with a green subterm u. A
green context is a context around a green subterm.

If we require compatibility only with green contexts instead of all higher-order con-
texts, we can construct appropriate term orders quite easily. However, it can then hap-
pen that for instance g > f and g a < f a. A naive generalization of the first-order SUP
rule would then allow for inferences such as

g="f ga#fa
fatfa

Sup

We seemingly rewrote larger into smaller terms because g > f, but still the conclusion
is larger than the right premise because g a < f a. The attempt to use such an inference
in the completeness proof fails because the conclusion is too large to allow us to invoke
the induction hypothesis.
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The solution is to restrict the SUP rule to green contexts as well. This is the ground
version of the SUP rule of our calculus:

Dvt=t C'Vsity=5s

/ ’ I SUP
C'VD Vsity=s

This ensures that for all ground SUP inferences, the conclusion is smaller than the
right premise. However, by restricting SUP to green contexts, we lose the ability to
derive the empty clause from g = f and g a # f a. We add the following rule to compen-
sate:

C'vs=t

C’/—tARGCONG
Vsex=tx

where s and ¢t have a functional type and z is a fresh variable. From g = f, ARGCONG
derives g = f 2. The SUP rule is then applicable to derive g a # g a, from which ERES
derives .

Seemingly, we have not gained much because ARGCONG also has the flaw that the
conclusion is often larger than the premise. But with ARGCONG, we can divide the
completeness proof in two steps. We first consider a clause set, in which the occur-
rences of each function constant f have been replaced with new constants fy, f1, fo, ...,
depending on how many arguments the specific occurrence has. We can construct a
model of this clause set via the usual induction with respect to the clause order with-
out making use of ARGCONG. Only in a second step, outside of the induction with
respect to the clause order, we use ARGCONG to show that the interpretations of dif-
ferent constants fg, f1, f2, ... can be consolidated.

4.2. Unification

In first-order logic, Robinson’s unification algorithm offers an efficient procedure to
compute the most general unifier of two terms. In higher-order logic, unification is a
substantially harder problem.

First, higher-order unification is undecidable. No unification algorithm can decide
for all term pairs whether they are unifiable. There will always be pairs of nonunifi-
able terms that a given procedure cannot determine to be nonunifiable. Instead, the
procedure will simply not terminate on these term pairs.

Second, most general unifiers of unifiable higher-order terms do not always exist. In
general, we must consider sets of unifiers to capture all possible unifiers. We call these
sets complete sets of unifiers. Complete sets of unifiers may even need to be infinite.
For example, given the unification problem z (f a) = f (z a), there are infinitely many
unifiers that do not subsume each other: {z — Az. 2}, {z — Az. f 2}, {z — Az. f (f 2)},
.... A higher-order unification procedure will therefore need to enumerate an infinite
set of unifiers in some cases, another reason why the procedure may not terminate.

To deal with the possible nontermination of unification, we must restructure the
prover architecture to be able to interleave computation of unifiers and computation
of inferences fairly. Our unification procedure regularly interrupts the computation of
unifiers to allow the main program to focus on other computations before resuming the
computation of unifiers.

Given two terms ¢ and u, we denote the complete set of unifiers that our unification
procedure eventually enumerates by CSU(¢, u). The nonground versions of our higher-
order rules are

/ ! / . / / /
D'vt=t C'Vsiuy=s Sup C'Vu#u ERES
(C'Vv D Vsty>=5)o C'o
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where ¢ € CSU(t,u) for SUP and ¢ € CSU(u,u’) for ERES, plus various other
conditions—e.g., regarding the order.

4.3. Booleans

In first-order logic, computing the clausal normal form is straightforward because
first-order logic distinguishes between terms and formulas and formulas cannot oc-
cur within terms. For instance, an expression such as f(a = b) is not permissible in
most treatments of first-order logic.

By contrast, in higher-order logic, Boolean terms may occur anywhere, including
under A-abstractions. This makes it impossible to eliminate all Boolean terms in pre-
processing. Instead, we integrate the computation of the clausal normal form into the
calculus by adding dedicated inference rules.

For example, the following inference rules transform equalities occurring within
terms:

_CG=0D  paHomst G20 gooLrw
C<{l>Vs=t (C<LTD)o
where, for BOOLRW, ¢ € CSU(s,t). We can impose order restrictions on these rules to
reduce the number of inferences that must be computed.

To achieve a graceful generalization of standard superposition, we add rules that
apply adaptations of first-order clausification rules on Boolean connectives and quan-
tifiers that occur on the outside, without being nested inside other terms. Applying
these clausification rules destructively can be justified to be refutationally complete by
our redundancy criterion.

4.4. Example

To demonstrate how \-superposition operates in practice, consider the following exam-
ple from the introduction:

(Cim ®+2i+1) = (L, 7%) + (s 20) + (i 1)

To prove it, we will need to use the fact that the big sum operator distributes over
addition:

(i F) +9(0) = (i, () + (i, 9(0))
We negate our conjecture and express the two statements as clauses in higher-order
logic:

sum1ln (Xi.i"24+2%i+1) @
Zsum1ln (Ni.i”2)+sum1n (Ai. 2xi)+sum 1n (Ai. 1)

summmn (M. fi+gi)
=summn (M. f i) +summn (Xi. g i)

(C))

Again, underlining identifies the larger sides of the largest literals, here using a
higher-order variant of the Knuth-Bendix order [Becker et al. 2017] with a weight
of 1 for each symbol.

Using the substitution {f — Xi. i "2, g — M. 2% 4, m — 1}, we can apply a SUP
inference of (8) into the subterm sum 1 n (Ai. ¢~ 2) +sum 1 n (Ai. 2 x 7) of (7), yielding

sumln (Ni.i"2+2xi+1) ©)
#sum1ln (M.i"2+2%3)+sum 1n (N\i. 1)
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Then, using the substitution {f — Xi. i "2+ 2x4, g — Ai. 1, m — 1}, we can apply a
SUP inference of (8) into the right-hand side of (9), yielding

sum1ln (MNi.i " 24+2%i+1)#sum1ln (Xi.i " 2+2xi+1) (10)

Finally, by ERES, we obtain the empty clause L.

5. COMPLETENESS OF LAMBDA-SUPERPOSITION

The A-superposition calculus is sound and refutationally complete. However, there are
caveats with both of these claims.

Regarding soundness, the caveat is that clausification, in particular Skolemization,
extends the signature with new symbols, and thus we cannot speak about soundness
when integrating clausification into our calculus. We can, however, define our logic in
a way that all Skolem symbols we might ever need are already in the signature and
have the correct interpretation. With respect to such a logic, we can then prove the
calculus sound.

Regarding completeness, the caveat is that completeness depends on the semantics
of higher-order logic. With standard semantics, higher-order logic is strong enough to
formalize arithmetic and by Godel’s first incompleteness theorem there exist unprov-
able valid statements that even A-superposition cannot prove. But if we use general
(Henkin) semantics instead, a semantics that allows for nonstandard models of the
function space, higher-order logic can no longer formalize arithmetic and Goédel’s first
incompleteness theorem does not apply. The good news is that the semantics do not
matter when we only care about what is provable. Stating that our calculus is refuta-
tionally complete simply means that we can prove the same statements as traditional
proof systems such as the ones implemented in proof assistants.

More precisely, we prove static refutational compeleteness with respect to a poly-
morphic variant of Church’s simple type theory [Church 1940] with Hilbert choice and
functional and Boolean extensionality, but without the axiom of infinity. The proof is
sketched below. We fix a set N of higher-order clauses with L ¢ N and assume that
it is saturated up to redundancy. We must then show that this set is satisfiable by
constructing a model of N.

Grounding. Like in the first-order proof, we consider the set G(N) of ground in-
stances of N.

Encoding. We then encode these ground higher-order clauses into first-order clauses.
For instance, we encode the higher-order term f (\x.x) (g f) as the first-order term
fo(lamyz. 2, 81(fo)), where lamy,. ., fa, fo and g; are first-order function symbols repre-
senting the entire \-expression A\z. x and the functions f and g with different numbers
of arguments. We denote this first-order encoding of the ground clauses by F(G(N)).
The encoding is vaguely related to the one we saw in the introduction, but it is only
needed for the proof, not in the practical implementation of a prover.

Model construction. Now we would like to apply the first-order completeness result
to obtain a model of F(G(N)). However, the encoding F does not remove Boolean terms.
Therefore, we need to extend first-order superposition and its completeness proof with
support for Booleans. Then we can show that the clause set 7(G(NV)) is saturated up to
redundancy with respect to the resulting calculus and that L ¢ F(G(N)). As a result,
we obtain a first-order model for F(G(N)).

Lifting to higher-order logic. We transform the first-order model into a higher-order
model of G(N) using saturation up to redundancy with respect to some of the higher-
order rules such as ARGCONG.
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Lifting to variables. Finally, we show that this model of G(N) is also a model of N.

6. COMPETING APPROACHES

Since the 1960s, a wide range of approaches have been proposed to prove higher-order
formulas automatically. We briefly review the main ones.

Resolution. The resolution calculus is a precursor of superposition, without built-in
support for equality. Like A-superposition, higher-order resolution [Huet 1973] cru-
cially relies on higher-order unification [Huet 1975], but it can postpone solving so-
called flex—flex pairs, an important optimization. Equality reasoning was added in the
Leo series of provers: LEO [Benzmiiller and Kohlhase 1998], LEO-II [Benzmiiller et al.
2015], and Leo-III [Steen and Benzmiiller 2018]. Leo-III also features a term order.
Its calculus, higher-order paramodulation, is similar to an incomplete version of \-
superposition.

Superposition. Beside A-superposition and higher-order paramodulation, another
superposition-based approach, combinatory superposition, consists of using SKBCI
combinators to represent A-expressions inside a modified superposition calculus. This
is the route taken by the Vampire prover [Bhayat and Reger 2020b]. Recently, this
approach has been enhanced to compute unifiers lazily [Bhayat et al. 2023].

Tableaux. Tableau calculi analyze the formula systematically, building a tree that
keeps track of the remaining cases to prove. Higher-order tableau calculi have been
proposed multiple times [Robinson 1969; Kohlhase 1995; Konrad 1998; Backes and
Brown 2011]. A major strength of tableaux is that they can work directly on unclausi-
fied formulas. However, they can end up repeating work in separate branches of the
tree, and they tend to be weaker than superposition at equality reasoning. Tableaux
form the basis of the Satallax prover [Brown 2012]. A related approach, focused se-
quent calculus, is implemented in the agsyHOL prover [Lindblad 2014].

Matings. Another related approach relies on matings, or connections. The TPS
prover [Andrews et al. 1996] implements this approach. The idea is to translate formu-
las to matrices and look for paths with certain properties in these matrices. Once the
prover successfully closes a path, a contradiction is found. The main benefit of the ap-
proach is ease of implementation. Unfortunately, it does not scale very well, especially
in the presence of extraneous axioms.

Satisfiability Modulo Theories (SMT). SMT solvers have been very successful in a
wide range of applications. Some solvers support full first-order logic, including quan-
tifiers. Among these, cve5 and veriT have been partly extended to higher-order logic
[Barbosa et al. 2019]. The strength of SMT solvers is their support for decidable theo-
ries. Their main weakness might be their handling of quantifiers.

7. COMPETITION RESULTS

Although refutational completeness is a desirable property, in practice what matters
more is performance on actual problems. One way to assess this is to run several
provers on the same problems. This is done every year as part of CASC, a compe-
tition that takes place at CADE (Conference on Automated Deduction) and IJCAR
(International Joint Conference on Automated Reasoning).

Every year, the competition includes a higher-order theorems (THF) division featur-
ing automatic theorem provers for higher-order logic. The problem set consists of 500
problems from the TPTP (Thousands of Problems for Theorem Provers) library [Sut-
cliffe 2017], chosen to be neither too easy nor too difficult. Among the provers, E and
Zipperposition implement A-superposition, but so does the newcomer Duper as well.
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2019 2020 2021 2022 2023

CvC4 268 194 - - -

cveh - - 239 282 258
Duper - - - - 36
E - - 300 419 407
Lash - - - 280 208
LEoO-II 179 112 95 174 58
Leo-III 359 287 357 336 302
Satallax 418 319 - 329 268
Vampire 304 299 386 367 452
Zipperposition 356 424 467 456 440

Number of problems 500 500 500 500 500

Fig. 1. CASC results in the THF division per year

Figure 1 presents the results (in number of problems solved) in that competition
from 2019 to 2023. For each year, the winning entry is shown in bold. Satallax has
been winning for most of the 2010s, including in 2019. It was dethroned by Zipperpos-
ition in 2020, which in turn was dethroned in 2023 by Vampire. Both Zipperposition
and Vampire implement variants of superposition. Based on a private communication
with Ahmed Bhayat, the main developer of Vampire’s higher-order support, we believe
that the following factors explain Vampire’s recent victory: (1) Vampire now performs
lazy unification [Bhayat et al. 2023]; (2) it has been extensively tuned using machine
learning; and (3) it is generally more optimized than Zipperposition.

2021 2022 2023

cveh 310 595 362
Duper - - 51
E 655 655 467
Lash - - 219
Leo-III 499 - 125
Satallax - - 278
Vampire 626 629 454
Zipperposition 675 654 462

Number of problems 720 720 1000

Fig. 2. CASC results in the Sledgehammer theorems division per year

Next to the THF division, CASC has also included, for the last three years, a
Sledgehammer theorems (SLH) division whose problems were exported from the Isa-
belle/HOL [Nipkow et al. 2002] proof assistant using the Sledgehammer tool [Paul-
son and Blanchette 2012]. Figure 2 presents these results. The SLH problems tend to
contain more axioms than those in THF but typically require less advanced higher-
order reasoning. In this setting, Zipperposition finished first in 2021, whereas E won
in 2022 and 2023. (Officially, Zipperposition enters as a so-called demonstration sys-
tem, because the set of its developers intersects with the set of Sledgehammer problem
providers. Thus, E won the first-place trophy three years in a row.)
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8. CONCLUSION

We presented \-superposition and its predecessor, superposition, focusing on the main
metatheoretical result: refutational completeness. The CASC results have confirmed
A-superposition as a leading approach to reason about problems in higher-order logic.
Good results were also obtained on Isabelle/HOL benchmarks, suggesting that native
higher-order reasoning can be useful also in the context of interactive theorem proving.
In ongoing work, we are developing a variant of A\-superposition that performs uni-
fication more lazily, replacing full unification by unification up to flex—flex pairs [Huet
1975]. Other avenues for future work include extensively fine-tuning E and Zipperpos-
ition on benchmark suites and improving Zipperposition’s support for polymorphism.
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