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Abstract
We describe an alternative architecture for “hammers,” inspired by Magnushammer, in which proofs
are found by the proof assistant’s built-in automation instead of by external automatic theorem
provers (ATPs). We implemented this approach in Isabelle’s Sledgehammer and evaluated it. The
new ATP-free approach nicely complements the traditional Sledgehammer. The two approaches in
combination solve more goals than the traditional ATP-based approach alone.
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1 Introduction

Sledgehammer [3,18] is a tool for Isabelle/HOL [17] that solves proof goals automatically using
external automatic theorem provers (ATPs). “Hammer” systems such as Sledgehammer but
also HOL(y)Hammer [12] and CoqHammer [9] are made up of four or five main components [6]:

1. The relevance filter (or “premise selector”) heuristically identifies a subset of the available
facts (definitions, lemmas, theorems, etc.) as possibly relevant to the current goal.
Typically, hundreds of facts can be selected without overwhelming the ATP. Sledgehammer
includes three relevance filters: MePo is based on iterative selection [15], MaSh is based
on naive Bayes and k nearest neighbors [5], and MeSh combines MePo and MaSh.

2. The translation module constructs an ATP problem from the selected facts and the
current goal, converting them from the proof assistant’s logic (e.g., Isabelle’s polymorphic
higher-order logic) to the ATP’s logic.

3. The ATP tries to prove the problem. For Sledgehammer, commonly used ATPs include
the first-order superposition prover SPASS [7]; the higher-order superposition provers
E [21], Vampire [2], and Zipperposition [20]; the higher-order paramodulation prover
Leo-III [19]; and the first-order SMT solvers cvc5 [1], veriT [8], and Z3 [10]. Multiple
ATPs are tried in parallel.
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4. On success, the optional proof minimization module repeatedly invokes the ATP with
subsets of the facts referenced in the ATP proof, in an attempt to reduce the number of
dependencies and speed up the next step, proof reconstruction.

5. Finally, the proof reconstruction module transforms a proof found by an ATP into the
proof assistant’s input language (e.g., Isabelle’s Isar [22]). Typically, the structure of the
ATP proof is discarded, and a single Isabelle proof method (also called tactic) is invoked
with the facts referenced in the ATP proof.

As an example, Sledgehammer might select 1024 facts and translate them, along with the
goal, to E’s monomorphic higher-order logic. Then suppose E finds a proof involving three
facts: f1, f2, and f3. Minimization reduces this list to two: f1 and f3. Finally, by trial and
error, Sledgehammer determines that the proof method simp add: f1 f3 solves the Isabelle
goal, so this is suggested to the user. The user can simply click this proof method invocation
to insert it into their proof development, and move on to the next goal.

The ATPs’ strength is that they can find their way through hundreds of facts. Nevertheless,
it is not uncommon for Sledgehammer to fail on a goal that can be solved by a single
parameterless call to auto, Isabelle’s main workhorse. The ATPs, which routinely surprise
users with nonobvious proofs, can also be a bottleneck.

This suggests an alternative, ATP-free architecture for hammers:

1. The relevance filter works as before, except that it selects at most a few dozen facts,
because proof methods tend to scale less well than ATPs.

2. A proof method is invoked. The selected facts f1, . . . , fn are either introduced into the
goal as premises (e.g., using f1 . . . fn by auto) or are made available to the proof method
via parameters (e.g., by (simp add: f1 . . . fn)), depending on the method.

3. On success, the proof minimization module attempts to reduce the number of facts needed
for the proof to speed up the proof method.

We implemented this approach in Sledgehammer, with proof methods complementing
the ATPs for proof search. The idea is not completely new. Magnushammer [16], whose
relevance filter relies on powerful transformers, has a similar architecture and obtained
remarkable results. However, the tool is not readily available, and it requires considerably
heavier computational resources than Sledgehammer’s faster and simpler relevance filters.

With our evaluation (Section 4), we try to answer the following research questions: How
successful is an ATP-free hammer that relies on fast and simple relevance filtering? How
fast are proof methods? How successful are ATP and ATP-free hammers when used in
combination? But before we try to answer these questions, we review the implementation in
Sledgehammer (Section 2) and study an example interaction with the newly extended tool
(Section 3).

2 Implementation

Sledgehammer has a generic notion of “prover” with two instances: traditional ATPs [14] and
SMT solvers [3]. We have now extended the tool with a third instance: proof methods. The
supported proof methods are those that Sledgehammer already used for reconstruction and
that do not rely on external tools: algebra, argo, auto, blast, fastforce, force, linarith, meson,
metis, order, presburger, satx, and simp. Notably, simp performs simplification using equations
as oriented rewrite rules, auto extends simp with general-purpose classical reasoning, and
blast is a tableau prover [4].
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Thus, our ATP-free hammer is not a brand new hammer; rather, it is integrated in an
existing hammer that is already part of the users’ workflow. Our objective is to increase the
users’ productivity without requiring them to change their habits.

This tool will be part of the next Isabelle release, which is expected at the end of 2025.
We used the results of our empirical evaluation to craft a new default portfolio that runs
traditional ATPs, SMT solvers, and proof methods in parallel.

3 Example

The Khovanskii_Theorem entry of the Archive of Formal Proofs formalizes a theorem in
additive combinatorics due to Askold Khovanskii [13]. Among the proof steps is the following:

have map2 (+) (map2 (+) xs ys) zs = map2 (+) xs (map2 (+) ys zs)
for xs ys zs :: (′a :: ab_semigroup_add) list

In Isabelle, the have command states a new goal within a local proof context, and for
specifies universally quantified variables. The goal states that the operation map2 (+) is
associative for any lists xs, ys, and zs of elements that form an additive abelian semigroup.
The function map2 :: (′a ⇒ ′b ⇒ ′c) ⇒ ′a list ⇒ ′b list ⇒ ′c list maps a binary function on
the respective elements of two lists. The binary operation + is from the additive abelian
semigroup structure.

The first thing an Isabelle user might do to prove this goal is to invoke the try0 command
to launch several standard proof methods in parallel. This leads to a timeout with no
proof found. Next, the user might try Sledgehammer. When invoked as an ATP hammer,
Sledgehammer also times out with no proof found. When invoked as an ATP-free hammer,
Sledgehammer finds and outputs the following proof:

by (simp add: case_prodI2 prod.case_distrib zip_assoc case_prod_app
map_zip_map map_zip_map2 ab_semigroup_add_class.add_ac(1))

4 Evaluation

For our evaluation, we used Mirabelle [11, Section 4] to evaluate the ATP and ATP-
free hammers on goals originating from different sessions of the Isabelle distribution and
the Archive of Formal Proofs. Our objective was to include goals from various areas of
mathematics and computer science representing diverse formalization styles. Within a session,
the goals were selected at regular intervals, alleviating the issue that consecutive goals tend
to be similar. We used the repository revisions 0b46bf0a434f of Isabelle (2025-02-25) and
9dac8e411570 of the Archive of Formal Proofs (2025-02-28). The evaluation was run on a
server with an Intel Xeon Silver 4114 CPU and 187 GiB of RAM. The raw evaluation data is
available online.1

We first ran a representative external prover with a timeout of 10 seconds, 32 facts, and
varying relevance filter configurations on 1000 goals (four sessions with 250 goals each). The
aim was to identify the relevance filter that works best for a small number of facts. We found
out that with MePo, MaSh, and MeSh, the success rate was respectively 30.1 %, 24.4 %, and
32.4 %. Based on theses results, we decided to use MeSh for the remaining experiments. We
selected 5000 goals (20 sessions with 250 goals each).

1 https://doi.org/10.5281/zenodo.15727890
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Table 1 Success rate of several proof methods. The last column gives the success rate of the
union of all goals solved when considering 0, 1, 2, 4, 8, 16, 32, and 64 facts.

Proof method Success rate (%) w.r.t. number of facts
0 1 2 4 8 16 32 64 Union

algebra 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.7
argo 4.4 4.8 5.0 5.1 5.7 6.2 6.4 6.4 6.5
auto 24.8 25.5 26.2 26.9 28.5 27.1 20.8 7.9 33.9
blast 11.1 11.8 12.4 12.9 13.5 13.7 13.3 12.4 17.4
fastforce 26.1 26.9 27.8 28.4 29.4 28.8 20.8 9.5 36.8
force 26.0 26.7 27.4 27.9 28.4 26.9 21.1 9.8 35.5
linarith 4.0 4.3 4.4 4.6 4.9 5.2 5.3 5.3 5.6
meson 5.9 6.6 7.1 7.7 9.5 10.7 10.6 8.3 14.3
metis 9.3 10.3 11.2 12.6 15.9 18.9 21.6 20.6 28.1
order 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7
presburger 6.3 6.7 7.1 7.7 8.4 8.7 8.0 5.4 11.3
satx 2.3 2.5 2.6 2.7 2.9 3.1 3.3 3.3 3.3
simp 17.7 18.5 19.1 19.7 20.4 18.7 12.2 4.0 27.2

All of the above 28.5 29.7 30.7 32.1 35.1 38.8 39.0 32.8 46.8

Success Rate We evaluated the ATP hammer (i.e., Sledgehammer’s default portfolio) with
a timeout of 30 seconds: The success rate was 72.1 %. (This is similar to the value found
by Desharnais et al. [11].) In the present evaluation, we ran several proof methods with a
timeout of two seconds and a number of facts varying from 0 to 64: The success rates are
in Table 1. The union of all proof methods with 0 facts had a success rate of 28.5 %; this
scenario approximates the try0 command. The union of all proof methods with any number
of facts (i.e., the ATP-free hammer) had a success rate of 46.8 %.

Together, the ATP hammer and our approximation of try0 had a success rate of 74.1 %:
an improvement of 2.0 percentage points over the ATP hammer alone. Together, the ATP
and ATP-free hammers had a success rate of 74.6 %: an improvement of 2.5 percentage
points over the ATP hammer and of 0.5 percentage points over the ATP hammer and try0
together. A 2.5 or 0.5 percentage points increase of the success rate might not sound like
much, but as Blanchette et al. remarked in a previous paper [7, Section 7]:

When analyzing enhancements to automatic provers, it is important to remember what
difference a modest-looking gain of a few percentage points can make to users. The
benchmarks were chosen to be representative of typical Isabelle goals and include many
that are either too easy or too hard to effectively evaluate automatic provers. Indeed,
some of the most essential tools in Isabelle, such the arithmetic decision procedures,
score well below 10% when applied indiscriminately to the entire Judgment Day suite.

Running Time How quickly do the proof methods find the proofs? Table 2 answers this
question for some proof methods, focusing on the ones that have a success rate of more than
10 % according to the last column of Table 1. The median, or 50th percentile, is shown,
as well as other percentiles. For example, the number 31 in the first row indicates that
90 % of the goals proved by auto without any fact were proved within 31 milliseconds. For
comparison, the last row presents the running times for the ATP hammer.

Table 2 shows that proof methods can find a proof very quickly, but that the running
time of some proof methods (e.g., auto, force) rapidly increases with the number of facts.
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Table 2 Running time to find a proof of several proof methods.

Prover(s) Facts Running time (ms) at percentiles
25 50 75 90 95 99

auto 0 2 4 12 31 56 224
auto 4 5 12 29 69 136 382
auto 16 58 124 251 532 814 1 532
auto 64 716 1 088 1 478 1 718 1 854 1 981
blast 0 0 1 2 5 11 86
blast 4 1 1 3 7 14 107
blast 16 3 6 10 29 87 546
blast 64 42 85 262 624 1 078 1 789
fastforce 0 1 5 21 70 146 566
fastforce 4 5 15 42 116 234 668
fastforce 16 48 147 384 816 1 181 1 813
fastforce 64 313 986 1 421 1 810 1 887 2 066
force 0 1 5 19 63 136 906
force 4 4 13 35 113 234 918
force 16 39 103 250 551 856 1 688
force 64 563 943 1 407 1 805 1 926 2 056
meson 0 0 4 8 14 26 74
meson 4 4 8 12 22 35 174
meson 16 20 30 45 96 216 984
meson 64 98 182 352 886 1 228 1 794
metis 0 8 11 19 32 70 474
metis 4 12 17 25 47 114 486
metis 16 36 49 80 182 372 1 318
metis 64 224 404 816 1 454 1 635 1 900
simp 0 1 4 11 29 51 135
simp 4 2 6 17 41 71 225
simp 16 9 30 106 298 488 1 100
simp 64 50 204 605 1 365 1 776 1 990
ATP hammer 464 653 1 044 1 820 2 339 3 966

Portfolios So far, we have seen that a virtual portfolio consisting of all 13 proof methods
with all eight number-of-fact configurations had a success rate of 46.8 % (Table 1). Such a
virtual portfolio is not very realistic, because it would require 13 × 8 × 2 = 208 seconds with
our per-configuration timeout of two seconds. A more realistic alternative is to consider the
greedy sequence of length n. The sequence is obtained by iteratively (1) taking first some
best prover configuration for the goals of interest, and (2) removing all goals proved by this
configuration. These two steps are repeated n times, yielding n configurations. The result is
not necessarily optimal, but it can be computed efficiently.

Table 3a presents the greedy sequence of length 32 based on our experiments. This
portfolio could be for a ATP-free hammer that aims to maximize the success rate. Table 3b
presents an alternative greedy sequence of the same length that first evaluates all proof
methods without any fact. This portfolio could be for a ATP-free hammer that aims to
subsume the try0 command. Given 64 seconds—or 8 seconds and 8 threads—the first
portfolio would have had a success rate of 46.7 % and the second of 46.4 %.

CVIT 2016
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Table 3 Greedy sequences of proof methods. The column SRI contains the success rate improve-
ment (% points) over the previous row and CSR contains the cumulative success rate (%).

(a) When maximizing success rate

Proof method Facts SRI CSR

1 fastforce 8 29.40 29.4
2 metis 64 7.62 37.0
3 auto 32 2.56 39.6
4 metis 16 1.52 41.1
5 force 0 1.22 42.3
6 simp 32 1.00 43.3
7 fastforce 16 0.72 44.0
8 metis 32 0.52 44.6
9 fastforce 2 0.24 44.8

10 linarith 16 0.20 45.0
11 metis 8 0.20 45.2
12 simp 16 0.20 45.4
13 simp 64 0.18 45.6
14 blast 32 0.12 45.7
15 algebra 0 0.10 45.8
16 force 32 0.10 45.9
17 argo 16 0.08 46.0
18 auto 4 0.08 46.1
19 auto 64 0.08 46.1
20 presburger 32 0.08 46.2
21 meson 16 0.06 46.3
22 blast 8 0.04 46.3
23 blast 64 0.04 46.4
24 fastforce 32 0.04 46.4
25 force 8 0.04 46.4
26 linarith 64 0.04 46.5
27 meson 64 0.04 46.5
28 simp 1 0.04 46.6
29 simp 8 0.04 46.6
30 algebra 2 0.02 46.6
31 blast 0 0.02 46.6
32 blast 4 0.02 46.7

(b) When subsuming try0

Proof method Facts SRI CSR

1 fastforce 0 26.10 26.1
2 metis 0 1.06 27.2
3 auto 0 0.68 27.8
4 force 0 0.32 28.2
5 algebra 0 0.14 28.3
6 linarith 0 0.14 28.4
7 argo 0 0.06 28.5
8 blast 0 0.04 28.5
9 meson 0 0.00 28.5

10 order 0 0.00 28.5
11 presburger 0 0.00 28.5
12 satx 0 0.00 28.5
13 simp 0 0.00 28.5
14 metis 64 8.90 37.4
15 fastforce 16 4.06 41.5
16 metis 32 1.42 42.9
17 simp 32 1.12 44.0
18 auto 32 0.52 44.6
19 fastforce 8 0.36 44.9
20 metis 16 0.32 45.2
21 simp 16 0.20 45.4
22 simp 64 0.18 45.6
23 linarith 64 0.12 45.7
24 metis 8 0.12 45.9
25 blast 32 0.10 46.0
26 force 32 0.10 46.1
27 presburger 32 0.08 46.1
28 auto 64 0.06 46.2
29 meson 16 0.06 46.3
30 blast 8 0.04 46.3
31 blast 64 0.04 46.3
32 fastforce 4 0.04 46.4

5 Conclusion

We described a hammer architecture in which the external ATPs are replaced by the
proof assistant’s built-in proof methods. We presented an extension of Sledgehammer that
implements this idea. The relevance filter is then directly connected to Isabelle’s built-in
proof automation. In this way, goals that, given the right facts, are easy for the built-in
automation but too difficult for external ATPs can now be solved. Our empirical evaluation
found that the newly extended Sledgehammer has a higher success rate than its predecessor
based only on ATPs.

Future work includes the classification of facts. Currently, we treat all facts given to
a proof method in the same way, but some methods (e.g., auto) work better when the
provided facts are classified (e.g., into simplification, introduction, and elimination rules).
By integrating fact classification into Sledgehammer, we hope to improve the success rate of
proof methods.
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